Numerically Efficient Fully Orthogonalized Single-step SNP-BLUP

Matti Taskinen, Esa Mäntysaari, Ismo Strandén
Natural Resources Institute Finland (Luke)
12.2.2018 WCGALP 2018 Auckland NZ

Challenge

Computations of large animal breeding evaluations become numerially challenging when number of genotyped animals increases.

Background: Single-step Genomic BLUP (ssGBLUP)

- A mixed model equation (MME).
- Combines pedigree (A) and genomic marker relationship information $\left(\mathbf{G}_{g}\right)$ through Single-step relationship matrix H.
- Requires inversion of full genomic relationship matrix \mathbf{G}_{g}
- Inversion \mathbf{G}_{g}^{-1} becomes a bottleneck when number of genotyped increases.

Background: Single-step Genomic BLUP (ssGBLUP)

Single-step relationship matrix \mathbf{H}

- A mixed model equation (MME).

- Combines pedigree (A) and genomic marker relationship information $\left(\mathbf{G}_{g}\right)$ through Single-step relationship matrix \mathbf{H}.
- Requires inversion of full genomic relationship matrix G
- Inversion \mathbf{G}_{g}^{-1} becomes a bottleneck when number of genotyped increases.

$$
\mathbf{H}^{-1}=\mathbf{A}^{-1}+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}_{w}^{-1}-\left(\mathbf{A}_{22}\right)^{-1}
\end{array}\right]
$$

Pedigree relationship matrix:

$$
\mathbf{A}^{-1}=\left[\begin{array}{ll}
\mathbf{A}^{11} & \mathbf{A}^{12} \\
\mathbf{A}^{21} & \mathbf{A}^{22}
\end{array}\right] \begin{aligned}
& (1=\text { non-genotyped }) \\
& (2= \\
& \text { genotyped })
\end{aligned}
$$

Adjusted genomic relationship matrix:

$$
\mathbf{G}_{w}=(1-w) \mathbf{G}_{g}+w \mathbf{A}_{22}
$$

Genomic relationship matrix:

$$
\mathbf{G}_{g}=\mathbf{Z}_{m} \mathbf{Z}_{m}^{\prime}
$$

\mathbf{Z}_{m} is centered and scaled marker matrix

Background: Single-step Genomic BLUP (ssGBLUP)

- A mixed model equation (MME).
- Combines pedigree (A) and genomic marker relationship information (\mathbf{G}_{g}) through Single-step relationship matrix \mathbf{H}.
- Requires inversion of full genomic relationship matrix \mathbf{G}_{g}.
- Inversion \mathbf{G}_{g}^{-1} becomes a bottleneck when number of genotyped increases.

Single-step relationship matrix H

$$
\mathbf{H}^{-1}=\mathbf{A}^{-1}+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}_{w}^{-1}-\left(\mathbf{A}_{22}\right)^{-1}
\end{array}\right]
$$

Pedigree relationship matrix:

$$
\left.\mathbf{A}^{-1}=\left[\begin{array}{ll}
\mathbf{A}^{11} & \mathbf{A}^{12} \\
\mathbf{A}^{21} & \mathbf{A}^{22}
\end{array}\right] \begin{array}{l}
(1=\text { non-genotyped }) \\
(2=
\end{array} \text { genotyped }\right)
$$

Adjusted genomic relationship matrix:

$$
\mathbf{G}_{w}=(1-w) \mathbf{G}_{g}+w \mathbf{A}_{22}
$$

Genomic relationship matrix:

$$
\mathbf{G}_{g}=\mathbf{Z}_{m} \mathbf{Z}_{m}^{\prime}
$$

\mathbf{Z}_{m} is centered and scaled marker matrix

Background: Single-step Genomic BLUP (ssGBLUP)

- A mixed model equation (MME).
- Combines pedigree (A) and genomic marker relationship information (\mathbf{G}_{g}) through Single-step relationship matrix \mathbf{H}.
- Requires inversion of full genomic relationship matrix \mathbf{G}_{g}.
- Inversion \mathbf{G}_{g}^{-1} becomes a bottleneck when number of genotyped increases.

Single-step relationship matrix H

$$
\mathbf{H}^{-1}=\mathbf{A}^{-1}+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}_{w}^{-1}-\left(\mathbf{A}_{22}\right)^{-1}
\end{array}\right]
$$

Pedigree relationship matrix:

$$
\left.\mathbf{A}^{-1}=\left[\begin{array}{ll}
\mathbf{A}^{11} & \mathbf{A}^{12} \\
\mathbf{A}^{21} & \mathbf{A}^{22}
\end{array}\right] \begin{array}{l}
(1=\text { non-genotyped }) \\
(2=
\end{array} \text { genotyped }\right)
$$

Adjusted genomic relationship matrix:

$$
\mathbf{G}_{w}=(1-w) \mathbf{G}_{g}+w \mathbf{A}_{22}
$$

Genomic relationship matrix:

$$
\mathbf{G}_{g}=\mathbf{Z}_{m} \mathbf{Z}_{m}^{\prime}
$$

\mathbf{Z}_{m} is centered and scaled marker matrix

Previously: Linearly Equivalent Mixed Model Equations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.
> - Linearly equivalent MMEs [1]: decomposition of relationship matrix \mathbf{G} of random effects $\widehat{\mathbf{u}}$ as

$$
\mathbf{G}=\mathbf{M} \widetilde{\mathbf{G}} \mathbf{M}^{\prime}
$$

- Alternative MME: parts of decomposition attached
to new model matrix $\mathbf{Z}=\mathbf{Z} \mathbf{M}$ and new set of
random effects $\widetilde{\mathrm{u}}$ related through $\widetilde{\mathbf{G}}$.
- Original MME solved from $\widehat{\mathbf{u}}=\mathbf{M u}$
- Inversion G^{-1} avoided if $\widetilde{G}=\mathbb{I}$, i.e. \mathbb{u} "orthogonal".
- GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathrm{u}}_{m}$ are marker effects.

4

Previously: Linearly Equivalent Mixed Model Equations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.

- Linearly equivalent MMEs [1]: decomposition of relationship matrix \mathbf{G} of random effects $\widehat{\mathbf{u}}$ as

$$
\mathbf{G}=\mathbf{M} \widetilde{\mathbf{G}} \mathbf{M}^{\prime}
$$

Original MME

$$
\left[\begin{array}{l}
\hat{\mathbf{b}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array}\right]
$$

- Alternative MME: parts of decomposition attached

to new model matrix $\mathbf{Z}=\mathbf{Z M}$ and new set of random effects \widetilde{u} related through $\widetilde{\mathbf{G}}$.

```
Original MME solved from }\widehat{\mathbf{u}}=\mathbf{M\widetilde{u}
```

Inversion \mathbf{G}^{-1} avoided if $\widetilde{\mathbf{G}}=\mathbf{I}$, i.e. $\widetilde{\mathbf{u}}$ "orthogonal"

- GBLUP \Leftrightarrow SNP-BLUP: $\tilde{\mathrm{u}}_{m}$ are marker effects.

Previously: Linearly Equivalent Mixed Model Equations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.

- Linearly equivalent MMEs [1]: decomposition of relationship matrix \mathbf{G} of random effects $\widehat{\mathbf{u}}$ as

$$
\mathbf{G}=\mathbf{M} \widetilde{\mathbf{G}} \mathbf{M}^{\prime}
$$

- Alternative MME: parts of decomposition attached to new model matrix $\widetilde{\mathbb{Z}}=\mathbf{Z M}$ and new set of random effects ü related through $\widetilde{\mathbf{G}}$.

```
Original MME solved from \(\widehat{\mathbf{u}}=\mathbf{M u}\)
```

Inversion \mathbf{G}^{-1} avoided if $\widetilde{\mathbf{G}}=\mathbf{I}$, i.e. $\widetilde{\mathrm{u}}$ "orthogonal"
GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathrm{u}}_{m}$ are marker effects

Previously: Linearly Equivalent Mixed Model Equations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.

- Linearly equivalent MMEs [1]: decomposition of relationship matrix \mathbf{G} of random effects $\widehat{\mathbf{u}}$ as

$$
\mathbf{G}=\mathbf{M} \widetilde{\mathbf{G}} \mathbf{M}^{\prime}
$$

- Alternative MME: parts of decomposition attached to new model matrix $\widetilde{\mathbb{Z}}=\mathbf{Z M}$ and new set of random effects ü related through $\widetilde{\mathbf{G}}$.
- Original MME solved from $\widehat{\mathbf{u}}=\mathbf{M} \widetilde{\mathbf{u}}$.

Inversion G^{-1} avoided if $\widetilde{\mathrm{G}}=\mathbf{I}$, i.e. $\widetilde{\text { u }}$ "orthogonal". GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathrm{u}}_{m}$ are marker effects.

Original MME

$$
\left[\begin{array}{l}
\hat{\mathbf{b}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array}\right]
$$

Linearly equivalent MME

$$
\left[\begin{array}{l}
\hat{\mathbf{b}} \\
\widetilde{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \widetilde{\mathbf{Z}} \\
\widetilde{\mathbb{Z}}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \widetilde{\mathbb{Z}}^{\prime} \mathbf{R}^{-1} \widetilde{\mathbf{Z}}+\widetilde{\mathbf{G}}^{-1}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\widetilde{\mathbb{Z}}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array}\right]
$$

Calculation of original effects:

$$
\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}_{b} & \mathbf{0} \\
\mathbf{0} & \mathbf{M}
\end{array}\right]\left[\begin{array}{l}
\widehat{\mathbf{b}} \\
\widetilde{\mathbf{u}}
\end{array}\right]
$$

Previously: Linearly Equivalent Mixed Model Equations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.

- Linearly equivalent MMEs [1]: decomposition of relationship matrix \mathbf{G} of random effects $\widehat{\mathbf{u}}$ as

$$
\mathbf{G}=\mathbf{M} \widetilde{\mathbf{G}} \mathbf{M}^{\prime}
$$

- Alternative MME: parts of decomposition attached to new model matrix $\widetilde{\mathbb{Z}}=\mathbf{Z M}$ and new set of random effects ü related through $\widetilde{\mathbf{G}}$.
- Original MME solved from $\widehat{\mathbf{u}}=\mathbf{M} \widetilde{\mathbf{u}}$.
- Inversion \mathbf{G}^{-1} avoided if $\widetilde{\mathbf{G}}=\mathbf{I}$, i.e. $\widetilde{\text { u }}$ "orthogonal".

GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathrm{u}}_{m}$ are marker effects.

Previously: Linearly Equivalent Mixed Model Equations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.

- Linearly equivalent MMEs [1]: decomposition of relationship matrix \mathbf{G} of random effects $\widehat{\mathbf{u}}$ as

$$
\mathbf{G}=\mathbf{M} \widetilde{\mathbf{G}} \mathbf{M}^{\prime}
$$

- Alternative MME: parts of decomposition attached to new model matrix $\widetilde{\mathbb{Z}}=\mathbf{Z M}$ and new set of random effects ü related through $\widetilde{\mathbf{G}}$.
- Original MME solved from $\widehat{\mathbf{u}}=\mathbf{M} \widetilde{\mathbf{u}}$.
- Inversion \mathbf{G}^{-1} avoided if $\widetilde{\mathbf{G}}=\mathbf{I}$, i.e. $\widetilde{\text { u }}$ "orthogonal".
- GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathrm{u}}_{m}$ are marker effects.

Original MME

$$
\left[\begin{array}{l}
\hat{\mathbf{b}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array}\right]
$$

Linearly equivalent MME

$$
\left[\begin{array}{l}
\hat{b} \\
\widetilde{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \widetilde{\mathbf{Z}} \\
\widetilde{\mathbf{Z}}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \widetilde{\mathbf{Z}}^{\prime} \mathbf{R}^{-1} \widetilde{\mathbf{Z}}+\widetilde{\mathbf{G}}^{-1}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\widetilde{\mathbf{Z}}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array}\right]
$$

Calculation of original effects:

$$
\left[\begin{array}{l}
\widehat{\mathbf{b}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}_{b} & \mathbf{0} \\
\mathbf{0} & \mathbf{M}
\end{array}\right]\left[\begin{array}{l}
\widehat{\mathbf{b}} \\
\widetilde{\mathbf{u}}
\end{array}\right]
$$

Previously: Linearly Equivalent ssGBLUP Formulations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.

- Unlimited number of possible decompositions of ssGBLUP relationship matrix [1]:

$$
\mathbf{I}=\mathbb{M}_{i} \widetilde{\mathrm{G}}_{i} \mathrm{M}_{i}
$$

- Linearly equivalent ssGBLUP formulations with varying number of random effects ũ without or with marker effects (ssSNP-BLUP).
- Numerical solutions same as with original ssGBLUP.
- Fully orthogonalized ($\widetilde{\mathbf{G}}=\mathbf{I})$ ssSNP-BLUPs:
- almost identical number of iterations when solved using iterative methods, e.g. PCG.

Previously: Linearly Equivalent ssGBLUP Formulations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.

- Unlimited number of possible decompositions of ssGBLUP relationship matrix [1]:

$$
\mathbf{H}=\mathbf{M}_{i} \widetilde{\mathbf{G}}_{i} \mathbf{M}_{i}^{\prime}
$$

Linearly equivalent ssGBLUP formulations with varying number of random effects ü without or with marker effects (ssSNP-BLUP)
$\mathbf{M}_{1}=\left[\begin{array}{cc}\mathbf{I}_{1} & \mathbf{A}_{\text {impp }} \\ \mathbf{0} & \mathbf{I}_{2}\end{array}\right]$
$\mathbf{M}_{2}=\left[\begin{array}{ccc}\mathbf{I}_{1} & \sqrt{w} \mathbf{A}_{\text {imp }} & \sqrt{1-w} \mathbf{Z}_{\text {imp }} \\ \mathbf{0} & \sqrt{w} \mathbf{I}_{2} & \sqrt{1-w} \mathbf{Z}_{m}\end{array}\right]$
$\mathbf{M}_{3}=\left[\begin{array}{ccc}\sqrt{1-w} \mathbf{I}_{1} & \sqrt{w} \mathbf{J}_{1} & \sqrt{1-w} \mathbf{Z}_{m m p} \\ \mathbf{0} & \sqrt{w} \mathbf{J}_{2} & \sqrt{1-w} \mathbf{Z}_{m}\end{array}\right]$
$\mathbf{M}_{4}=\left[\begin{array}{ccc}\left(\mathrm{L}_{1}{ }^{\prime}\right)^{-1} & \sqrt{w} \mathbf{A}_{\mathbf{A}_{m p}} \mathbf{J}_{\mathbf{2}}\left(\mathrm{L}^{\prime}\right)^{-1} & \sqrt{1-w} \mathbf{Z}_{\text {mpp }} \\ \mathbf{0} & \sqrt{w} \mathbf{J}_{2}\left(\mathrm{~L}^{\prime}\right)^{-1} & \sqrt{1-w} \mathbf{Z}_{m}\end{array}\right]$
$\mathbf{M}_{\mathrm{S}}=\left[\begin{array}{ccc}\sqrt{1-w}\left(\mathrm{~L}_{1}^{\prime}\right)^{-1} & \sqrt{w} \mathbf{J}_{1}\left(\mathrm{~L}^{\prime}\right)^{-1} & \sqrt{1-w} \mathbf{Z}_{i m p} \\ \mathbf{0} & \sqrt{w} \mathbf{J}_{2}\left(\mathrm{~L}^{\prime}\right)^{-1} & \sqrt{1-w} \mathbf{Z}_{m}\end{array}\right]$
$\mathbf{M}_{6}=\left[\begin{array}{ccc}\left(\mathrm{L}_{1}{ }^{\prime}\right)^{-1} & \sqrt{w} \mathbf{A}_{\text {imp }} \hat{\mathbf{J}}_{2}\left(\hat{\mathrm{~L}}^{\prime}\right)^{-1} & \sqrt{1-w} \mathbf{Z}_{i m p} \\ 0 & \sqrt{w} \mathbf{J}_{2}\left(\mathrm{~L}^{\prime}\right)^{-1} & \sqrt{1-w} \mathbf{Z}_{m}\end{array}\right]$

Numerical solutions same as with original ssGBLUP

- Fully orthogonalized $(\widetilde{\mathbf{G}}=\mathbf{I})$ ssSNP-BLUPs:
> - almost identical number of iterations when solved using iterative methods, e.g. PCG.

Previously: Linearly Equivalent ssGBLUP Formulations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.

- Unlimited number of possible decompositions of ssGBLUP relationship matrix [1]:

$$
\mathbf{H}=\mathbf{M}_{i} \widetilde{\mathbf{G}}_{i} \mathbf{M}_{i}^{\prime}
$$

- Linearly equivalent ssGBLUP formulations with varying number of random effects ũ without or with marker effects (ssSNP-BLUP).

$\mathbf{G}_{w}=w \mathbf{A}_{22}+(1-w) \mathbf{Z}_{m} \mathbf{Z}_{m}^{\prime}$
$\mathbf{z}_{i m p}=\mathbf{A}_{i m p} \mathbf{Z}_{m}$
Alternative RPG form
J_{1} picks non-genot.
J_{2} picks genotyped
Orthogonalized $\widetilde{\mathbf{G}}_{2}$
$\mathrm{L}_{1}=\operatorname{chol}\left(\mathrm{A}^{11}\right)$
Orthogonalized $\tilde{\mathbf{G}}_{3}$
Reduced \mathbf{A}_{22} of $\widetilde{\mathbf{G}}_{4}$
$\widehat{\mathrm{L}}=\operatorname{chol}\left(\widehat{\mathbf{A}}^{-1}\right)$, where
$\widehat{\mathbf{A}}$: genot. and ancestors

Numerical solutions same as with original ssGBLUP.

Fully orthogonalized $(\widetilde{\mathbf{G}}=\mathbf{I})$ ssSNP-BLUPs:
> - almost identical number of iterations when solved using iterative methods, e.g. PCG.

Previously: Linearly Equivalent ssGBLUP Formulations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.

- Unlimited number of possible decompositions of ssGBLUP relationship matrix [1]:

$$
\mathbf{H}=\mathbf{M}_{i} \widetilde{\mathbf{G}}_{i} \mathbf{M}_{i}^{\prime}
$$

- Linearly equivalent ssGBLUP formulations with varying number of random effects ũ without or with marker effects (ssSNP-BLUP).

- Numerical solutions same as with original ssGBLUP.

[^0]
Previously: Linearly Equivalent ssGBLUP Formulations

[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: Genet. Sel. Evol. 49.1 (2017), p. 15.

- Unlimited number of possible decompositions of ssGBLUP relationship matrix [1]:

$$
\mathbf{H}=\mathbf{M}_{i} \widetilde{\mathbf{G}}_{i} \mathbf{M}_{i}^{\prime}
$$

- Linearly equivalent ssGBLUP formulations with varying number of random effects ũ without or with marker effects (ssSNP-BLUP).
- Numerical solutions same as with original ssGBLUP.
- Fully orthogonalized ($\widetilde{\mathbf{G}}=\mathbf{I}$) ssSNP-BLUPs:
- almost identical number of iterations when solved using iterative methods, e.g. PCG.

$$
\left.\begin{array}{l}
\mathbf{M}_{1}=\left[\begin{array}{cc}
\mathbf{I}_{1} & \mathbf{A}_{i m p} \\
0 & \mathbf{I}_{2}
\end{array}\right] \\
\mathbf{M}_{2}=\left[\begin{array}{ccc}
\mathbf{I}_{1} & \sqrt{w} \mathbf{A}_{i m p} & \sqrt{1-w} \mathbf{Z}_{i m p} \\
\mathbf{0} & \sqrt{w} \mathbf{I}_{2} & \sqrt{1-w} \mathbf{Z}_{m}
\end{array}\right] \\
\mathbf{M}_{3}=\left[\begin{array}{ccc}
\sqrt{1-w} \mathbf{I}_{1} & \sqrt{w} \mathbf{J}_{1} & \sqrt{1-w} \mathbf{Z}_{i m p} \\
0 & \sqrt{w} \mathbf{J}_{2} & \sqrt{1-w} \mathbf{Z}_{m}
\end{array}\right] \\
\mathbf{M}_{4}
\end{array}=\left[\begin{array}{ccc}
\left(\mathrm{L}_{1}^{\prime}\right)^{-1} & \sqrt{w} \mathbf{A}_{i m p} \mathbf{J}_{2}\left(\mathrm{~L}^{\prime}\right)^{-1} & \sqrt{1-w} \mathbf{Z}_{i m p} \\
\mathbf{0} & \sqrt{w} \mathbf{J}_{2}\left(\mathrm{~L}^{\prime}\right)^{-1} & \sqrt{1-w} \mathbf{Z}_{m}
\end{array}\right]\right] \text { (}
$$

$\mathbf{G}_{w}=w \mathbf{A}_{22}+(1-w) \mathbf{Z}_{m} \mathbf{Z}_{m}^{\prime}$
$\mathbf{Z}_{\text {imp }}=\mathbf{A}_{\text {imp }} \mathbf{Z}_{m}$
Alternative RPG form
J_{1} picks non-genot.
J_{2} picks genotyped
Orthogonalized $\widetilde{\mathbf{G}}_{2}$
$\mathrm{L}=\operatorname{chol}\left(\mathrm{A}^{-1}\right)$

Orthogonalized $\widetilde{\mathbf{G}}_{3}$
Reduced A_{22} of \mathbf{G}_{4}
$\hat{\mathrm{L}}=\operatorname{chol}\left(\hat{\mathrm{A}}^{-1}\right)$, where
$\widehat{\mathbf{A}}$: genot. and ancestors

Result 1: Iteration Convergence of Fully Orthogonalized $\left(\mathbf{G}=\mathbf{M}_{i} \mathbf{M}_{i}^{\prime}\right)$ MMEs

- Assuming singular values of (here usually) wide matrices \mathbf{M}_{i} to be known: diagonal \mathbf{D}_{i}.

Since M_{i} are all decompositions of same G,

 singular values are shared: $\mathbf{D}_{i}=\mathbf{D}$```
If fixed effects are neglected, Z = I, and single trait
case is assumed, all fully orthogonalized MME
share eigenvalues (D2}+\lambda\mathbf{I}\mathrm{ and rest equal }
```

Numbers of distinct (approximate) eigenvalues are thus same $\Rightarrow$ this explains same iteration counts.

Singular value decomposition of

$$
\mathbf{M}_{i}=\mathbf{U}_{i}\left[\begin{array}{ll}
\mathbf{D}_{i} & 0
\end{array}\right] \mathbf{V}_{i}^{\prime}
$$

## Result 1: Iteration Convergence of Fully Orthogonalized $\left(\mathbf{G}=\mathbf{M}_{i} \mathbf{M}_{i}^{\prime}\right)$ MMEs

- Assuming singular values of (here usually) wide matrices $\mathbf{M}_{i}$ to be known: diagonal $\mathbf{D}_{i}$.
- Since $\mathbf{M}_{i}$ are all decompositions of same $\mathbf{G}$, singular values are shared: $\mathbf{D}_{i}=\mathbf{D}$.

If fixed effects are neglected, $\mathbf{Z}=\mathbf{I}$, and single trait case is assumed, all fully orthogonalized MME share eigenvalues $\mathbf{D}^{2}+\lambda I$ and rest equal $\lambda$.

Numbers of distinct (approximate) eigenvalues are thus same $\Rightarrow$ this explains same iteration counts.

Singular value decomposition of

$$
\mathbf{M}_{i}=\mathbf{U}_{i}\left[\begin{array}{ll}
\mathbf{D}_{i} & 0
\end{array}\right] \mathbf{V}_{i}^{\prime}
$$

Eigendecomposition of G

$$
\mathbf{G}=\mathbf{M}_{i} \mathbf{M}_{i}^{\prime}=\mathbf{U}_{i} \mathbf{D}_{i}^{2} \mathbf{U}_{i}^{\prime}=\mathbf{U D}^{2} \mathbf{U}^{\prime}
$$

## Result 1: Iteration Convergence of Fully Orthogonalized ( $\mathbf{G}=\mathbf{M}_{i} \mathbf{M}_{i}^{\prime}$ ) MMEs

- Assuming singular values of (here usually) wide matrices $\mathbf{M}_{i}$ to be known: diagonal $\mathbf{D}_{i}$.
- Since $\mathbf{M}_{i}$ are all decompositions of same $\mathbf{G}$, singular values are shared: $\mathbf{D}_{i}=\mathbf{D}$.
- If fixed effects are neglected, $\mathbf{Z}=\mathbf{I}$, and single trait case is assumed, all fully orthogonalized MME share eigenvalues $\mathbf{D}^{2}+\lambda \mathbf{I}$ and rest equal $\lambda$.

Numbers of distinct (approximate) eigenvalues are thus same $\Rightarrow$ this explains same iteration counts.

Singular value decomposition of

$$
\mathbf{M}_{i}=\mathbf{U}_{i}\left[\begin{array}{ll}
\mathbf{D}_{i} & 0
\end{array}\right] \mathbf{V}_{i}^{\prime}
$$

Eigendecomposition of $\mathbf{G}$

$$
\mathbf{G}=\mathbf{M}_{i} \mathbf{M}_{i}^{\prime}=\mathbf{U}_{i} \mathbf{D}_{i}^{2} \mathbf{U}_{i}^{\prime}=\mathbf{U D}^{2} \mathbf{U}^{\prime}
$$

Eigendecomposition of "MME"

$$
\widetilde{\mathbf{Z}}_{i}^{\prime} \widetilde{\mathbf{Z}}_{i}+\lambda \mathbf{I} \approx \mathbf{V}_{i}\left[\begin{array}{cc}
\mathbf{D}^{2}+\lambda \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \lambda \mathbf{I}
\end{array}\right] \mathbf{V}_{i}^{\prime}
$$

## Result 1: Iteration Convergence of Fully Orthogonalized ( $\mathbf{G}=\mathbf{M}_{i} \mathbf{M}_{i}^{\prime}$ ) MMEs

- Assuming singular values of (here usually) wide matrices $\mathbf{M}_{i}$ to be known: diagonal $\mathbf{D}_{i}$.
- Since $\mathbf{M}_{i}$ are all decompositions of same $\mathbf{G}$, singular values are shared: $\mathbf{D}_{i}=\mathbf{D}$.
- If fixed effects are neglected, $\mathbf{Z}=\mathbf{I}$, and single trait case is assumed, all fully orthogonalized MME share eigenvalues $\mathbf{D}^{2}+\lambda \mathbf{I}$ and rest equal $\lambda$.
- Numbers of distinct (approximate) eigenvalues are thus same $\Rightarrow$ this explains same iteration counts.

Singular value decomposition of

$$
\mathbf{M}_{i}=\mathbf{U}_{i}\left[\begin{array}{ll}
\mathbf{D}_{i} & 0
\end{array}\right] \mathbf{V}_{i}^{\prime}
$$

## Eigendecomposition of $\mathbf{G}$

$$
\mathbf{G}=\mathbf{M}_{i} \mathbf{M}_{i}^{\prime}=\mathbf{U}_{i} \mathbf{D}_{i}^{2} \mathbf{U}_{i}^{\prime}=\mathbf{U D}^{2} \mathbf{U}^{\prime}
$$

Eigendecomposition of "MME"

$$
\widetilde{\mathbf{Z}}_{i}^{\prime} \widetilde{\mathbf{Z}}_{i}+\lambda \mathbf{I} \approx \mathbf{V}_{i}\left[\begin{array}{cc}
\mathbf{D}^{2}+\lambda \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \lambda \mathbf{I}
\end{array}\right] \mathbf{V}_{i}^{\prime}
$$

## Numerical efficiency:

- Linearly equivalent ssSNP-BLUPs: same solution and convergence, which formulation to choose?
- Select numerically efficient formulation
- How to get a more efficient formulation?

Group of non-genotyped (1) split to non-ancestors (n) and ancestors (a) of genotyped (2).

Smaller pedigree of non-genotyped ancestors (a) and genotyped (2) individuals can be formed with
$\widehat{\mathrm{A}}^{-1}=\widehat{\mathrm{LL}}^{\prime}$ as its pedigree relationship matrix.

## Numerical efficiency:

- Linearly equivalent ssSNP-BLUPs: same solution and convergence, which formulation to choose?
- Select numerically efficient formulation.
- How to get a more efficient formulation?

Group of non-genotyped (1) split to non-ancestors $(\mathrm{n})$ and ancestors (a) of genotyped (2).

Smaller pedigree of non-genotyped ancestors (a) and genotyped (2) individuals can be formed with
$\widehat{\mathrm{A}}^{-1}=\widehat{\mathrm{L}}^{\prime} \hat{\mathrm{L}}^{\prime}$ as its pedigree relationship matrix.

## Numerical efficiency:

- Linearly equivalent ssSNP-BLUPs: same solution and convergence, which formulation to choose?
- Select numerically efficient formulation.
- How to get a more efficient formulation?

Group of non-genotyped (1) split to non-ancestors $(\mathrm{n})$ and ancestors (a) of genotyped (2).

Smaller pedigree of non-genotyped ancestors (a) and genotyped (2) individuals can be formed with
$\widehat{\mathrm{A}}^{-1}=\widehat{\mathrm{L}}^{\prime} \widehat{\mathrm{L}}^{\prime}$ as its pedigree relationship matrix.

## Numerical efficiency:

- Linearly equivalent ssSNP-BLUPs: same solution and convergence, which formulation to choose?
- Select numerically efficient formulation.
- How to get a more efficient formulation?
- Group of non-genotyped (1) split to non-ancestors ( n ) and ancestors (a) of genotyped (2).


## Smaller pedigree of non-genotyped ancestors (a) and genotyped (2) individuals can be formed with <br> $\widehat{\mathbf{A}}^{-1}=\widehat{L L^{\prime}}$ as its pedigree relationship matrix.

$$
\begin{gathered}
\text { "Cholesky" of }= \\
\mathbf{L}=\left[\begin{array}{ccc}
\mathbf{L}_{n n} & \mathbf{0} & \mathbf{0} \\
\mathbf{L}_{a n} & \mathbf{L}_{a a} & \mathbf{L}_{a 2} \\
\mathbf{L}_{2 n} & \mathbf{L}_{2 a} & \mathbf{L}_{22}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{L}_{n n} & \mathbf{0} & \mathbf{0} \\
\mathbf{L}_{a n} & {[\widehat{\mathbf{L}}]} \\
\mathbf{L}_{2 n} &
\end{array}\right]
\end{gathered}
$$

## Numerical efficiency: Smaller Pedigree of Ancestors of Genotyped: $\widehat{\mathbf{A}}^{-1}$

- Linearly equivalent ssSNP-BLUPs: same solution and convergence, which formulation to choose?
- Select numerically efficient formulation.
- How to get a more efficient formulation?
- Group of non-genotyped (1) split to non-ancestors $(\mathrm{n})$ and ancestors (a) of genotyped (2).
- Smaller pedigree of non-genotyped ancestors (a) and genotyped (2) individuals can be formed with $\widehat{\mathbf{A}}^{-1}=\widehat{\mathbf{L}} \widehat{\mathbf{L}}^{\prime}$ as its pedigree relationship matrix.

$$
\left.\mathbf{L}=\left[\begin{array}{ccc}
\mathbf{L}_{n n} & \mathbf{0} & \mathbf{0} \\
\mathbf{L}_{a n} & \mathbf{L}_{a a} & \mathbf{L}_{a 2} \\
\mathbf{L}_{2 n} & \mathbf{L}_{2 a} & \mathbf{L}_{22}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{L}_{n n} & \mathbf{0} & \mathbf{0} \\
\mathbf{L}_{a n} & {[\widehat{\mathbf{L}}}
\end{array}\right]\right]
$$

"Cholesky" of = '
"Cholesky" of = '

Smaller pedigree of non-genotyped ancestors (a) and genotyped (2):

$$
\widehat{\mathbf{L}}=\left[\begin{array}{l}
\widehat{\mathbf{L}}_{a} \\
\widehat{\mathbf{L}}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{L}_{a a} & \mathbf{L}_{a 2} \\
\mathbf{L}_{2 a} & \mathbf{L}_{22}
\end{array}\right],
$$

## Partial Orthogonalization of ssGBLUP Relationship Matrix H

- "Cholesky" matrix L (of $\mathrm{A}^{-1}=\mathrm{LL}^{\prime}$ ) naturally orthogonalizes non-genotyped non-ancestors (n)

Orthogonalizing group (n) in H from ssGBLUP relationship matrix $\mathbf{H}$.

- Smaller pedigree individuals are related through:

$$
\xrightarrow[\mathbf{L}^{\prime} \mathbf{H L}]{ }=\left[\begin{array}{cc}
\mathbf{I}_{n} & 0 \\
0 & \widehat{\mathbf{L}}^{\prime} \hat{\mathrm{H}} \hat{\mathrm{~L}}
\end{array}\right]
$$

- Former "on-the-fly" imputation operations of genomic information are now part of orthogonal projection $\mathrm{P}_{\stackrel{-}{\perp}}^{\perp}$


## Partial Orthogonalization of ssGBLUP Relationship Matrix H

- "Cholesky" matrix L (of $\mathrm{A}^{-1}=\mathbf{L L}$ ) naturally orthogonalizes non-genotyped non-ancestors (n)

Orthogonalizing group (n) in H from ssGBLUP relationship matrix $\mathbf{H}$.

- Smaller pedigree individuals are related through:

$$
\overrightarrow{\mathbf{L}^{\prime} \mathbf{H L}}=\left[\begin{array}{cc}
\mathrm{I}_{n} & 0 \\
0 & \widehat{\mathrm{~L}}^{\prime} \widehat{\mathrm{H}} \hat{\mathrm{~L}}
\end{array}\right]
$$

$$
\widehat{\mathbf{L}}^{\prime} \hat{\mathbf{H}}^{\widehat{\mathbf{L}}}=\widehat{\mathbf{I}}+(1-w) \mathbf{P}_{\widehat{\mathbf{L}}_{a}^{\prime}}^{\perp}\left(\widehat{\mathbf{L}}_{2}^{\prime} \mathbf{Z}_{m} \mathbf{Z}_{m}^{\prime} \widehat{\mathbf{L}}_{2}-\widehat{\mathbf{I}}\right) \mathbf{P}_{\hat{\mathbf{L}}_{a}^{\prime}}^{\perp}
$$

## - Former "on-the-fly" imputation operations of

 genomic information are now part of orthogonal projection $\mathrm{P}^{\perp}$
## Partial Orthogonalization of ssGBLUP Relationship Matrix H

- "Cholesky" matrix L (of $\mathrm{A}^{-1}=\mathbf{L L}$ ) naturally orthogonalizes non-genotyped non-ancestors (n) from ssGBLUP relationship matrix $\mathbf{H}$.
- Smaller pedigree individuals are related through:

Orthogonalizing group (n) in H

$$
\left.\widehat{\mathbf{L}}^{\prime} \hat{\mathbf{H}}^{\mathbf{L}}=\widehat{\mathbf{I}}+(1-w) \mathbf{P}_{\widehat{\mathbf{L}}_{a}^{\prime}}^{\perp} \widehat{\mathbf{L}}_{2}^{\prime} \mathbf{Z}_{m} \mathbf{Z}_{m}^{\prime} \widehat{\mathbf{L}}_{2}-\widehat{\mathbf{I}}\right) \mathbf{P}_{\widehat{\mathbf{L}}_{a}^{\prime}}^{\perp}
$$

- Former "on-the-fly" imputation operations of genomic information are now part of orthogonal projection $\mathbf{P}_{\stackrel{\mathrm{L}}{a}^{\prime}}^{\perp}$.

$$
\mathbf{L}^{\prime} \mathbf{H L}=\left[\begin{array}{cc}
\mathbf{I}_{n} & 0 \\
0 & \hat{\mathbf{L}}^{\prime} \hat{\mathbf{H}} \hat{\mathrm{L}}
\end{array}\right]
$$

Orthogonal projection of
$a$

$$
\begin{aligned}
\mathbf{P}_{\widehat{\mathbf{L}}_{a}^{\prime}}^{\perp} & =\widehat{\mathbf{I}}-\widehat{\mathbf{L}}_{a}^{\prime}\left(\hat{\mathbf{L}}_{a} \hat{\mathbf{L}}_{a}^{\prime}\right)^{-1} \widehat{\mathbf{L}}_{a} \\
& =\widehat{\mathbf{I}}-\widehat{\mathbf{L}}_{a}^{\prime}\left(\widehat{\mathbf{A}}^{a a}\right)^{-1} \hat{\mathbf{L}}_{a}
\end{aligned}
$$

## Result 2: New ssSNP-BLUP Formulation using the Smaller Pedigree

- Let $\widetilde{\mathrm{L}}_{a}$ be sparsity preserving Cholesky factorization of $\widehat{\mathbf{A}}^{a a}$.

New fully orthogonalized ssSNP-BLUP: $\mathbf{H}=\mathbf{M} \widetilde{\mathbf{G}} \mathbf{M}^{\prime}$, where


## Sparse Cholesky L ${ }_{a}$ of

$$
\widehat{\mathbf{A}}^{a a}=\widehat{\mathbf{L}}_{a} \widehat{\mathbf{L}}_{a}^{\prime}=\widetilde{\mathbf{L}}_{a} \widetilde{\mathbf{L}}_{a}^{\prime}
$$

Main advantage of new formulation: size of numerical sparse Cholesky factorization matrix $L_{a}$ is number of non-genotyped ancestors ( $\mathbf{A}^{a a}$ ) instead of all non-genotyped ( $\mathbf{A}^{11}$ )

Four groups of random effects ü: non-genotyped ancestors (a) have two sets of animals effects.

## Result 2: New ssSNP-BLUP Formulation using the Smaller Pedigree

- Let $\widetilde{\mathrm{L}}_{a}$ be sparsity preserving Cholesky factorization of $\widehat{\mathbf{A}}^{a a}$.
- New fully orthogonalized ssSNP-BLUP: $\mathbf{H}=\mathbf{M} \widetilde{\mathbf{G}} \mathbf{M}^{\prime}$, where

$$
\mathbf{M}=\left(\mathbf{L}^{\prime}\right)^{-1}\left[\begin{array}{cccc}
\mathbf{I}_{n} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \sqrt{1-w} \widehat{\mathbf{M}}_{a} & \sqrt{w \mathbf{\mathbf { I }}} & \sqrt{1-w}\left(\widehat{\mathbf{I}}-\widehat{\mathbf{M}}_{a} \widehat{\mathbf{M}}_{a}^{\prime}\right) \widehat{\mathbf{L}}_{2}^{\prime} \mathbf{Z}_{m}
\end{array}\right]
$$

$$
\widetilde{\mathbf{G}}=\mathbf{I}, \text { and } \widehat{\mathbf{M}}_{a}=\widehat{\mathbf{L}}_{a}^{\prime}\left(\widetilde{\mathbb{L}}_{a}^{\prime}\right)^{-1}
$$

Main advantage of new formulation: size of numerical sparse Cholesky factorization matrix $\mathbb{L}_{n}$ is number of non-aenotyped ancestors ( $\mathbf{A}^{a a}$ ) instead of all non-genotyped ( $\mathbf{A}^{11}$ ).

Sparse Cholesky $\mathrm{L}_{a}$ of

$$
\widehat{\mathbf{A}}^{a a}=\widehat{\mathbf{L}}_{a} \widehat{\mathbf{L}}_{a}^{\prime}=\widetilde{\mathbf{L}}_{a} \widetilde{\mathbf{L}}_{a}^{\prime}
$$

## Four groups of random effects u: have two sets of animals effects

## Result 2: New ssSNP-BLUP Formulation using the Smaller Pedigree

- Let $\widetilde{\mathrm{L}}_{a}$ be sparsity preserving Cholesky factorization of $\widehat{\mathbf{A}}^{a a}$.
- New fully orthogonalized ssSNP-BLUP: $\mathbf{H}=\mathbf{M} \widetilde{\mathbf{G}} \mathbf{M}^{\prime}$, where

$$
\mathbf{M}=\left(\mathbf{L}^{\prime}\right)^{-1}\left[\begin{array}{cccc}
\mathbf{I}_{n} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \sqrt{1-w} \widehat{\mathbf{M}}_{a} & \sqrt{w \mathbf{\mathbf { I }}} & \sqrt{1-w}\left(\widehat{\mathbf{I}}-\widehat{\mathbf{M}}_{a} \widehat{\mathbf{M}}_{a}^{\prime}\right) \widehat{\mathbf{L}}_{2}^{\prime} \mathbf{Z}_{m}
\end{array}\right]
$$

$$
\left.\widetilde{\mathbf{G}}=\mathbf{I}, \text { and } \widehat{\mathbf{M}}_{a}=\widehat{\mathbf{L}}_{a}^{\prime} \widetilde{\mathbb{L}}_{a}^{\prime}\right)^{-1} .
$$

- Main advantage of new formulation: size of numerical sparse Cholesky factorization matrix $\mathrm{L}_{a}$ is number of non-genotyped ancestors ( $\widehat{\mathbf{A}}^{a a}$ ) instead of all non-genotyped ( $\mathbf{A}^{11}$ ).

Sparse Cholesky $\mathrm{L}_{a}$ of

$$
\widehat{\mathbf{A}}^{a a}=\widehat{\mathbf{L}}_{a} \widehat{\mathbf{L}}_{a}^{\prime}=\widetilde{\mathbf{L}}_{a} \widetilde{\mathbf{L}}_{a}^{\prime}
$$

Four groups of random effects ũ: non-genotyped ancestors (a) have two sets of animals effects.

## Result 2: New ssSNP-BLUP Formulation using the Smaller Pedigree

- Let $\widetilde{\mathrm{L}}_{a}$ be sparsity preserving Cholesky factorization of $\widehat{\mathbf{A}}^{a a}$.
- New fully orthogonalized ssSNP-BLUP: $\mathbf{H}=\mathbf{M} \widetilde{\mathbf{G}} \mathbf{M}^{\prime}$, where

$$
\mathbf{M}=\left(\mathbf{L}^{\prime}\right)^{-1}\left[\begin{array}{cccc}
\mathbf{I}_{n} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \sqrt{1-w} \widehat{\mathbf{M}}_{a} & \sqrt{w \mathbf{\mathbf { I }}} & \sqrt{1-w}\left(\widehat{\mathbf{I}}-\widehat{\mathbf{M}}_{a} \widehat{\mathbf{M}}_{a}^{\prime}\right) \widehat{\mathbf{L}}_{2}^{\prime} \mathbf{Z}_{m}
\end{array}\right]
$$

$$
\left.\widetilde{\mathbf{G}}=\mathbf{I}, \text { and } \widehat{\mathbf{M}}_{a}=\widehat{\mathbf{L}}_{a}^{\prime} \widetilde{\mathbb{L}}_{a}^{\prime}\right)^{-1} .
$$

- Main advantage of new formulation: size of numerical sparse Cholesky factorization matrix $\mathrm{L}_{a}$ is number of non-genotyped ancestors ( $\widehat{\mathbf{A}}^{a a}$ ) instead of all non-genotyped ( $\mathbf{A}^{11}$ ).
- Four groups of random effects ũ: non-genotyped ancestors (a) have two sets of animals effects.

Sparse Cholesky $\mathrm{L}_{a}$ of

$$
\widehat{\mathbf{A}}^{a a}=\widehat{\mathbf{L}}_{a} \widehat{\mathbf{L}}_{a}^{\prime}=\widetilde{\mathbf{L}}_{a} \widetilde{\mathbf{L}}_{a}^{\prime}
$$

## New random effects ũ

$$
\widetilde{\mathbf{u}}=\left[\begin{array}{c}
\widetilde{\mathbf{u}}_{n} \\
\widetilde{\mathbf{u}}_{a} \\
\widetilde{\mathbf{u}}_{a+2} \\
\widetilde{\mathbf{u}}_{m}
\end{array}\right]
$$



## Result 3: Numerical Feasibility with Large Number of Genotyped

- Sparse Cholesky $\widetilde{\mathrm{L}}_{a}$ (of $\widehat{\mathbf{A}}^{a a}=\widetilde{\mathrm{L}}_{a} \widetilde{\mathrm{~L}}_{a}^{\prime}$ ) has fill-ins depending on pedigree and proportion of genotyped.

```
Memory reguirements of }\mp@subsup{L}{a}{}\mathrm{ must remain
manageable with very large number of genotyped.
Investigated by simulating different proportions of
genotyped animals in Nordic dairy cattle population.
Pedigree of }9.2\mathrm{ million was "genotyped" with four
scenarios varying number of genotyped.
Memory usage: }13\mathrm{ times size of pedigree when 2.8
million genotyped, occupying 5 GB memory.
```


## Result 3: Numerical Feasibility with Large Number of Genotyped

- Sparse Cholesky $\widetilde{\mathrm{L}}_{a}$ (of $\widehat{\mathbf{A}}^{a a}=\widetilde{\mathrm{L}}_{a} \widetilde{\mathrm{~L}}_{a}^{\prime}$ ) has fill-ins depending on pedigree and proportion of genotyped.
- Memory reguirements of $\widetilde{\mathrm{L}}_{a}$ must remain manageable with very large number of genotyped.

```
Investigated by simulating different proportions of
genotyped animals in Nordic dairy cattle population.
Pedigree of }9.2\mathrm{ million was "genotyped" with four
scenarios varying number of genotyped.
Memory usage: }13\mathrm{ times size of pedigree when 2.8
million genotyped, occupying 5 GB memory.
```


## Result 3: Numerical Feasibility with Large Number of Genotyped

- Sparse Cholesky $\widetilde{\mathrm{L}}_{a}$ (of $\widehat{\mathbf{A}}^{a a}=\widetilde{\mathrm{L}}_{a} \widetilde{\mathrm{~L}}_{a}^{\prime}$ ) has fill-ins depending on pedigree and proportion of genotyped.
- Memory reguirements of $\widetilde{\mathrm{L}}_{a}$ must remain manageable with very large number of genotyped.
- Investigated by simulating different proportions of genotyped animals in Nordic dairy cattle population.

```
Pedigree of }9.2\mathrm{ million was "genotyped" with four
scenarios varying number of genotyped.
Memory usage: }13\mathrm{ times size of pedigree when 2.8
million genotyped, occupying 5 GB memory.
```


## Result 3: Numerical Feasibility with Large Number of Genotyped

- Sparse Cholesky $\widetilde{\mathbf{L}}_{a}$ (of $\widehat{\mathbf{A}}^{a a}=\widetilde{\mathbb{L}}_{a} \widetilde{\mathbb{L}}_{a}^{\prime}$ ) has fill-ins depending on pedigree and proportion of genotyped.
- Memory reguirements of $\widetilde{\mathrm{L}}_{a}$ must remain manageable with very large number of genotyped.
- Investigated by simulating different proportions of genotyped animals in Nordic dairy cattle population.
- Pedigree of 9.2 million was "genotyped" with four scenarios varying number of genotyped.



## Result 3: Numerical Feasibility with Large Number of Genotyped

- Sparse Cholesky $\widetilde{\mathrm{L}}_{a}$ (of $\widehat{\mathbf{A}}^{a a}=\widetilde{\mathrm{L}}_{a} \widetilde{\mathbb{L}}_{a}^{\prime}$ ) has fill-ins depending on pedigree and proportion of genotyped.
- Memory reguirements of $\widetilde{\mathrm{L}}_{a}$ must remain manageable with very large number of genotyped.
- Investigated by simulating different proportions of genotyped animals in Nordic dairy cattle population.
- Pedigree of 9.2 million was "genotyped" with four scenarios varying number of genotyped.
- Memory usage: 13 times size of pedigree when 2.8
 million genotyped, occupying 5 GB memory.


## Conclusions

1 All fully orthogonalized ssSNP-BLUPs were shown to share same convergence properties with respect to iterative solution methods.

2 New ssSNP-BLUP formulation was presented in which Single-step relationship matrix $\mathbf{H}$ was expressed using smaller pedigree of genotyped and their ancestors.

3 Feasibility of ssSNP-BLUP was investigated with very large number of genotyped individuals.

## Conclusions

1 All fully orthogonalized ssSNP-BLUPs were shown to share same convergence properties with respect to iterative solution methods.

New ssSNP-BLUP formulation was presented in which Single-step relationship matrix H was expressed using smaller pedigree of genotyped and their ancestors.

## Feasibility of ssSNP-BLUP was investigated with very large number of genotyped individuals.

## Conclusions

1 All fully orthogonalized ssSNP-BLUPs were shown to share same convergence properties with respect to iterative solution methods.

2 New ssSNP-BLUP formulation was presented in which Single-step relationship matrix $\mathbf{H}$ was expressed using smaller pedigree of genotyped and their ancestors.

Feasibility of ssSNP-BLUP was investigated with very large number of genotyped individuals.

## Conclusions

1 All fully orthogonalized ssSNP-BLUPs were shown to share same convergence properties with respect to iterative solution methods.

2 New ssSNP-BLUP formulation was presented in which Single-step relationship matrix $\mathbf{H}$ was expressed using smaller pedigree of genotyped and their ancestors.

3 Feasibility of ssSNP-BLUP was investigated with very large number of genotyped individuals.

- Memory requirements were found to be manageable indicating that ssSNP-BLUP remains numerically efficient when number of genotyped animals increases.


## Conclusions

1 All fully orthogonalized ssSNP-BLUPs were shown to share same convergence properties with respect to iterative solution methods.

2 New ssSNP-BLUP formulation was presented in which Single-step relationship matrix $\mathbf{H}$ was expressed using smaller pedigree of genotyped and their ancestors.

3 Feasibility of ssSNP-BLUP was investigated with very large number of genotyped individuals.

- Memory requirements were found to be manageable indicating that ssSNP-BLUP remains numerically efficient when number of genotyped animals increases.


## Lulke

NATURAL RESOURCES INSTITUTE FINLAND


[^0]:    Fully orthogonalized ( $\widetilde{G}=\mathbf{I})$ ssSNP-BLUPs:

    - almost identical number of iterations when solved using iterative methods, e.g. PCG.

