Numerically Efficient Fully Orthogonalized Single-step SNP-BLUP

Matti Taskinen, Esa Mäntysaari, Ismo Strandén Natural Resources Institute Finland (Luke)

12.2.2018 WCGALP 2018 Auckland NZ

Luke NATURAL RESOURCES NSTITUTE FINLAND

© Natural Resources Institute Finland

Challenge

Computations of large animal breeding evaluations become **numerially challenging** when number of genotyped animals increases.

• A mixed model equation (MME).

- Combines pedigree (A) and genomic marker relationship information (G_g) through Single-step relationship matrix H.
- Requires inversion of full genomic relationship matrix G_g.
- Inversion \mathbf{G}_{g}^{-1} becomes a bottleneck when number of genotyped increases.

- A mixed model equation (MME).
- Combines **pedigree** (A) and **genomic marker** relationship information (G_g) through Single-step relationship matrix **H**.
- Requires inversion of full genomic relationship matrix G_g.
- Inversion \mathbf{G}_{g}^{-1} becomes a bottleneck when number of genotyped increases.

Single-step relationship matrix \mathbf{H}

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_{w}^{-1} - (\mathbf{A}_{22})^{-1} \end{bmatrix}$$

Pedigree relationship matrix:

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} \\ \mathbf{A}^{21} & \mathbf{A}^{22} \end{bmatrix} \quad \begin{array}{l} (1 = \text{non-genotyped}) \\ (2 = \text{genotyped}) \end{array}$$

Adjusted genomic relationship matrix:

$$\mathbf{G}_{w} = (1 - w)\mathbf{G}_{g} + w\mathbf{A}_{22}$$

 $\mathbf{G}_g = \mathbf{Z}_m \mathbf{Z}'_m$

 \mathbf{Z}_m is centered and scaled marker matrix

Matti Taskinen, Esa Mäntysaari, Ismo Strandén

- A mixed model equation (MME).
- Combines **pedigree** (A) and **genomic marker** relationship information (G_g) through Single-step relationship matrix **H**.
- Requires inversion of full genomic relationship matrix G_g.
- Inversion G_g^{-1} becomes a bottleneck when number of genotyped increases.

Single-step relationship matrix ${\bf H}$

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_{w}^{-1} - (\mathbf{A}_{22})^{-1} \end{bmatrix}$$

Pedigree relationship matrix:

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} \\ \mathbf{A}^{21} & \mathbf{A}^{22} \end{bmatrix} \quad \begin{array}{l} (1 = \text{non-genotyped}) \\ (2 = \text{genotyped}) \end{array}$$

Adjusted genomic relationship matrix:

 $\mathbf{G}_w = (1 - w)\mathbf{G}_g + w\mathbf{A}_{22}$ Genomic relationship matrix:

 $\mathbf{G}_g = \mathbf{Z}_m \mathbf{Z}'_m$

 \mathbf{Z}_m is centered and scaled marker matrix

- A mixed model equation (MME).
- Combines pedigree (A) and genomic **marker** relationship information (G_{σ}) through Single-step relationship matrix H.
- Requires inversion of full aenomic relationship matrix G_a.
- Inversion \mathbf{G}_{a}^{-1} becomes a bottleneck when number of genotyped increases.

Single-step relationship matrix H

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_{w}^{-1} - (\mathbf{A}_{22})^{-1} \end{bmatrix}$$

Pedigree relationship matrix:

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} \\ \mathbf{A}^{21} & \mathbf{A}^{22} \end{bmatrix} \quad \begin{array}{l} (1 = \text{non-genotyped}) \\ (2 = \text{genotyped}) \end{array}$$

Adjusted genomic relationship matrix:

$$\mathbf{G}_w = (1 - w)\mathbf{G}_g + w\mathbf{A}_{22}$$

Genomic relationship matrix:

 $\mathbf{G}_{g} = \mathbf{Z}_{m}\mathbf{Z}_{m}^{\prime}$

Z_m is centered and scaled marker matrix

Matti Taskinen, Esa Mäntysaari, Ismo Strandén

- [1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- Linearly equivalent MMEs [1]: decomposition of relationship matrix G of random effects û as

 $\mathbf{G} = \mathbf{M}\widetilde{\mathbf{G}}\mathbf{M}'$

- Alternative MME: parts of decomposition attached to new model matrix $\widetilde{\mathbb{Z}} = \mathbb{Z}\mathbb{M}$ and new set of random effects \widetilde{u} related through \widetilde{G} .
- Original MME solved from $\hat{\mathbf{u}} = \mathbf{M} \tilde{\mathbf{u}}$.
- Inversion \mathbf{G}^{-1} avoided if $\widetilde{\mathbf{G}} = \mathbf{I}$, i.e. $\widetilde{\mathbf{u}}$ "orthogonal".
- GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathbf{u}}_m$ are marker effects.

4 WCGALP 2018

Numerically Efficient Fully Orthogonalized Single-step SNP-BLUP

- [1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- Linearly equivalent MMEs [1]: decomposition of relationship matrix G of random effects \hat{u} as

 $\mathbf{G} = \mathbf{M}\widetilde{\mathbf{G}}\mathbf{M}'$

- Alternative MME: parts of decomposition attached to new model matrix $\widetilde{\mathbf{Z}} = \mathbf{ZM}$ and <u>new set of</u> <u>random effects</u> $\widetilde{\mathbf{u}}$ related through $\widetilde{\mathbf{G}}$.
- Original MME solved from $\hat{\mathbf{u}} = \mathbf{M}\tilde{\mathbf{u}}$.
- Inversion \mathbf{G}^{-1} avoided if $\widetilde{\mathbf{G}} = \mathbf{I}$, i.e. $\widetilde{\mathbf{u}}$ "orthogonal".
- GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathbf{u}}_m$ are marker effects.

4 WCGALP 2018

Numerically Efficient Fully Orthogonalized Single-step SNP-BLUP

- M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- Linearly equivalent MMEs [1]: decomposition of relationship matrix G of random effects \hat{u} as

 $\mathbf{G} = \mathbf{M}\widetilde{\mathbf{G}}\mathbf{M}'$

- Alternative MME: parts of decomposition attached to new model matrix $\widetilde{Z} = ZM$ and <u>new set of</u> <u>random effects</u> \widetilde{u} related through \widetilde{G} .
- Original MME solved from $\hat{\mathbf{u}} = \mathbf{M}\tilde{\mathbf{u}}$.
- Inversion \mathbf{G}^{-1} avoided if $\widetilde{\mathbf{G}} = \mathbf{I}$, i.e. $\widetilde{\mathbf{u}}$ "orthogonal".
- GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathbf{u}}_m$ are marker effects.

4 WCGALP 2018

Numerically Efficient Fully Orthogonalized Single-step SNP-BLUP

Original MME						
$\begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$	$\mathbf{X'R^{-1}X}$ $\mathbf{Z'R^{-1}X}$	$ \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z} + \mathbf{G}^{-1} \end{bmatrix} $	$ \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{y} \end{bmatrix} $			

- [1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- Linearly equivalent MMEs [1]: decomposition of relationship matrix G of random effects \hat{u} as

 $\mathbf{G} = \mathbf{M}\widetilde{\mathbf{G}}\mathbf{M}'$

- Alternative MME: parts of decomposition attached to new model matrix $\widetilde{Z} = ZM$ and <u>new set of</u> <u>random effects</u> \widetilde{u} related through \widetilde{G} .
- <u>Original MME solved</u> from $\hat{\mathbf{u}} = \mathbf{M}\tilde{\mathbf{u}}$.
- Inversion \mathbf{G}^{-1} avoided if $\widetilde{\mathbf{G}} = \mathbf{I}$, i.e. $\widetilde{\mathbf{u}}$ "orthogonal".
- GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathbf{u}}_m$ are marker effects.

4 WCGALP 2018

Numerically Efficient Fully Orthogonalized Single-step SNP-BLUF

Original MME						
$\begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{bmatrix} =$	$\begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{X} \end{bmatrix}$	$ \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z} + \mathbf{G}^{-1} \end{bmatrix} $	$ \begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{Z'}\mathbf{R}^{-1}\mathbf{y} \end{bmatrix} $			

Li	nearly e	equiv	alent	MME	
$\begin{bmatrix} \widehat{\mathbf{b}} \\ \widetilde{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}' \\ \widetilde{\mathbf{Z}}' \end{bmatrix}$	$\mathbf{R}^{-1}\mathbf{X}$ $\mathbf{R}^{-1}\mathbf{X}$ $\mathbf{\hat{Z}}$	X'R Ž'R ⁻¹ Ž	$\mathbf{\widetilde{Z}}^{-1}\mathbf{\widetilde{Z}}$ $\mathbf{\widetilde{Z}} + \mathbf{\widetilde{G}}^{-1}$	1] ⁻¹ [$\mathbf{X'R^{-1}y} \\ \mathbf{\widetilde{Z}'R^{-1}y} \end{bmatrix}$
Calculatio	n of orig	jinal e	ffects:		
	$\begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{bmatrix} =$	$\begin{bmatrix} \mathbf{I}_b \\ 0 \end{bmatrix}$	0 M [b ŭ		C
	Matti Taskinen	. Esa Mäntys	saari, Ismo S	trandén	Luk

STITUTE CIMUAN

- M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- Linearly equivalent MMEs [1]: decomposition of relationship matrix G of random effects \hat{u} as

 $\mathbf{G} = \mathbf{M}\widetilde{\mathbf{G}}\mathbf{M}'$

- Alternative MME: parts of decomposition attached to new model matrix $\widetilde{Z} = ZM$ and <u>new set of</u> <u>random effects</u> \widetilde{u} related through \widetilde{G} .
- <u>Original MME solved</u> from $\hat{\mathbf{u}} = \mathbf{M}\tilde{\mathbf{u}}$.
- Inversion \mathbf{G}^{-1} avoided if $\widetilde{\mathbf{G}} = \mathbf{I}$, i.e. $\widetilde{\mathbf{u}}$ "orthogonal".
- GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathbf{u}}_m$ are marker effects.

WCGALP 2018

Original MME						
$\begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}' \mathbf{R}^{-1} \mathbf{X} \\ \mathbf{Z}' \mathbf{R}^{-1} \mathbf{X} \end{bmatrix}$	$\frac{\mathbf{X}'\mathbf{R}^{-1}\mathbf{Z}}{\mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z}+\mathbf{G}^{-1}}$	$\begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{y} \end{bmatrix}$				

Linearly equivalent MME
$ \begin{bmatrix} \widehat{\mathbf{b}} \\ \widetilde{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}' \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}' \mathbf{R}^{-1} \widetilde{\mathbf{Z}} \\ \widetilde{\mathbf{Z}}' \mathbf{R}^{-1} \mathbf{X} & \widetilde{\mathbf{Z}}' \mathbf{R}^{-1} \widetilde{\mathbf{Z}} + \widetilde{\mathbf{G}}^{-1} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{X}' \mathbf{R}^{-1} \mathbf{y} \\ \widetilde{\mathbf{Z}}' \mathbf{R}^{-1} \mathbf{y} \end{bmatrix} $
Calculation of original effects:
$\begin{bmatrix} \mathbf{\widehat{b}} \\ \mathbf{\widehat{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_b & 0 \\ 0 & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{\widehat{b}} \\ \mathbf{\widetilde{u}} \end{bmatrix}$
Matti Taskinan, Esa Mäntysaari, Ismo Strandán

STITUTE CIMUAN

- M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- Linearly equivalent MMEs [1]: decomposition of relationship matrix G of random effects \hat{u} as

- Alternative MME: parts of decomposition attached to new model matrix $\widetilde{Z} = ZM$ and <u>new set of</u> <u>random effects</u> \widetilde{u} related through \widetilde{G} .
- Original MME solved from $\hat{\mathbf{u}} = \mathbf{M}\tilde{\mathbf{u}}$.
- Inversion \mathbf{G}^{-1} avoided if $\widetilde{\mathbf{G}} = \mathbf{I}$, i.e. $\widetilde{\mathbf{u}}$ "orthogonal".
- GBLUP \Leftrightarrow SNP-BLUP: $\widetilde{\mathbf{u}}_m$ are marker effects.

Linearly equivalent MME	
$ \begin{bmatrix} \mathbf{\hat{b}} \\ \mathbf{\widetilde{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1}\mathbf{\widetilde{Z}} \\ \mathbf{\widetilde{Z}}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{\widetilde{Z}}'\mathbf{R}^{-1}\mathbf{\widetilde{Z}} + \mathbf{\widetilde{G}}^{-1} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{X}'\mathbf{R} \\ \mathbf{\widetilde{Z}}'\mathbf{R} \end{bmatrix} $	$\begin{bmatrix} -1 \mathbf{y} \\ -1 \mathbf{y} \end{bmatrix}$
Calculation of original effects: $\begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{b} & 0 \\ 0 & \mathbf{M} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \tilde{\mathbf{u}} \end{bmatrix}$	ç
	TKG

- [1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- Unlimited number of possible decompositions of ssGBLUP relationship matrix [1]:

- Linearly equivalent ssGBLUP formulations with varying number of random effects \tilde{u} without or with marker effects (ssSNP-BLUP).
- Numerical <u>solutions same</u> as with original ssGBLUP.
- Fully orthogonalized ($\widetilde{\mathbf{G}} = \mathbf{I}$) ssSNP-BLUPs:
 - almost identical number of iterations when solved using iterative methods, e.g. PCG.

- [1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- <u>Unlimited number of possible decompositions</u> of ssGBLUP relationship matrix [1]:

- Linearly equivalent ssGBLUP formulations with varying number of random effects \tilde{u} without or with marker effects (ssSNP-BLUP).
- Numerical <u>solutions same</u> as with original ssGBLUP.
- Fully orthogonalized ($\widetilde{\mathbf{G}} = \mathbf{I}$) ssSNP-BLUPs:
 - almost identical number of iterations when solved using iterative methods, e.g. PCG.

$$\begin{split} \mathbf{M}_{1} &= \begin{bmatrix} \mathbf{I}_{1} & \mathbf{A}_{1T} \\ \mathbf{0} & \mathbf{I}_{2}^{-T} \end{bmatrix} & \widetilde{\mathbf{G}}_{1} &= \begin{bmatrix} (\mathbf{A}^{1/1-1} & \mathbf{0}_{1} & \mathbf{G}_{1} \\ \mathbf{0}^{T} & \mathbf{C}^{T} & \mathbf{A}_{2T} & \sqrt{1-u}Z_{u}Z_{u} \end{bmatrix} \\ \mathbf{M}_{2} &= \begin{bmatrix} \mathbf{I}_{1}^{T} & \sqrt{u}\widetilde{\mathbf{A}}_{uy} & \sqrt{1-u}Z_{u} \\ \mathbf{0}^{T} & \sqrt{1-u}Z_{u} \end{bmatrix} & \widetilde{\mathbf{G}}_{2} &= \begin{bmatrix} (\mathbf{A}^{1/1-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{2}^{T} & \mathbf{0} \\ \mathbf{0}^{T} & \sqrt{u}\mathbf{I}_{2} & \sqrt{1-u}Z_{u} \end{bmatrix} \\ \mathbf{M}_{3} &= \begin{bmatrix} (\mathbf{A}^{1/1-1} & \sqrt{u}\mathbf{I}_{1}^{T} & \sqrt{1-u}Z_{u} \\ \mathbf{0}^{T} & \sqrt{u}\mathbf{I}_{2} & \sqrt{1-u}Z_{u} \end{bmatrix} & \widetilde{\mathbf{G}}_{3} &= \begin{bmatrix} (\mathbf{A}^{1/1-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{2}^{T} & \mathbf{0} \\ \mathbf{0} & \sqrt{u}\mathbf{I}_{2} & \sqrt{1-u}Z_{u} \end{bmatrix} \\ \mathbf{M}_{4} &= \begin{bmatrix} (\mathbf{I}_{1}^{1/1-1} & \sqrt{1-u}Z_{u} \\ \mathbf{0}^{T} & \sqrt{u}\mathbf{A}_{2}(\mathbf{I}_{2}^{1/1-1} & \sqrt{1-u}Z_{u} \\ \mathbf{0}^{T} & \sqrt{u}\mathbf{A}_{2}(\mathbf{I}_{2}^{1/1} & \sqrt{1-u}Z_{u} \end{bmatrix} \\ \widetilde{\mathbf{G}}_{3} &= \begin{bmatrix} \mathbf{I}_{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{2} \end{bmatrix} \\ \mathbf{M}_{5} &= \begin{bmatrix} \sqrt{1-u}(\mathbf{I}_{1}^{1/1} & \sqrt{u}\mathbf{I}_{u}\mathbf{U}_{u}^{T}) & \sqrt{1-u}Z_{u} \\ \mathbf{0}^{T} & \sqrt{u}\mathbf{A}_{2}(\mathbf{I}_{1}^{1/1} & \sqrt{1-u}Z_{u} \end{bmatrix} \\ \widetilde{\mathbf{G}}_{3} &= \begin{bmatrix} \mathbf{I}_{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{2} \\ \mathbf{I}_{1} & -\mathbf{c}\mathbf{b}\mathbf{I}(\mathbf{A}^{T}), \\ \mathbf{M}_{5} &= \begin{bmatrix} (\mathbf{I}_{1}^{1/1} & \sqrt{u}\mathbf{A}_{u}\mathbf{A}_{u}^{T}) & \sqrt{1-u}Z_{u} \\ \sqrt{u}\mathbf{A}_{u}^{T}(\mathbf{I}_{1}^{1/1} & \sqrt{u}\mathbf{A}_{u}\mathbf{A}_{u} \end{bmatrix} \\ \widetilde{\mathbf{G}}_{3} &= \begin{bmatrix} \mathbf{I}_{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{u} \\ \mathbf{I}_{1} & -\mathbf{c}\mathbf{b}\mathbf{I}(\mathbf{A}^{T}), \\ \mathbf{I}_{1} & -\mathbf{c}\mathbf{b}\mathbf{I$$

- [1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- Unlimited number of possible decompositions of ssGBLUP relationship matrix [1]:

- Linearly equivalent ssGBLUP formulations with varying number of random effects \tilde{u} without or with marker effects (ssSNP-BLUP).
- Numerical <u>solutions same</u> as with original ssGBLUP.
- Fully orthogonalized ($\widetilde{\mathbf{G}} = \mathbf{I}$) ssSNP-BLUPs:
 - almost identical number of iterations when solved using iterative methods, e.g. PCG.

- [1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- Unlimited number of possible decompositions of ssGBLUP relationship matrix [1]:

- Linearly equivalent ssGBLUP formulations with varying number of random effects \tilde{u} without or with marker effects (ssSNP-BLUP).
- Numerical <u>solutions same</u> as with original ssGBLUP.
- Fully orthogonalized ($\widetilde{\mathbf{G}} = \mathbf{I}$) ssSNP-BLUPs:
 - almost identical number of iterations when solved using iterative methods, e.g. PCG.

- [1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. "Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects". In: *Genet. Sel. Evol.* 49.1 (2017), p. 15.
- Unlimited number of possible decompositions of ssGBLUP relationship matrix [1]:

- Linearly equivalent ssGBLUP formulations with varying number of random effects <u>u</u> without or with marker effects (ssSNP-BLUP).
- Numerical <u>solutions same</u> as with original ssGBLUP.
- Fully orthogonalized ($\widetilde{\mathbf{G}} = \mathbf{I}$) ssSNP-BLUPs:
 - almost identical number of iterations when solved using iterative methods, e.g. PCG.

М	$I_1 = \begin{bmatrix} I_1 & A_{imp} \\ 0 & I_2 \end{bmatrix}$	$\widetilde{\mathbf{G}}_1$	=	$\begin{bmatrix} (\boldsymbol{A^{11}})^{-1} \\ \boldsymbol{0} \end{bmatrix}$	$\begin{bmatrix} 0\\ G_w \end{bmatrix}$	$\mathbf{G}_w{=}w\mathbf{A}_{22}{+}(1{-}w)\mathbf{Z}_m\mathbf{Z}_m'$
м	${}_{2} = \begin{bmatrix} \mathbf{I}_{1} & \sqrt{w} \mathbf{A}_{imp} & \sqrt{1-w} \mathbf{Z}_{imp} \\ 0 & \sqrt{w} \mathbf{I}_{2} & \sqrt{1-w} \mathbf{Z}_{m} \end{bmatrix}$	$\overline{\mathbf{G}}_2$	=	$\begin{bmatrix} (A^{11})^{-1} \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ A_{22} & 0 \\ 0 & I_m \end{bmatrix}$	$\mathbf{Z}_{imp} = \mathbf{A}_{imp} \mathbf{Z}_m$
м	$\mathbf{J}_{3} = \begin{bmatrix} \sqrt{1-w}\mathbf{I}_{1} & \sqrt{w}\mathbf{J}_{1} & \sqrt{1-w}\mathbf{Z}_{isop} \\ 0 & \sqrt{w}\mathbf{J}_{2} & \sqrt{1-w}\mathbf{Z}_{m} \end{bmatrix}$	$\mathbf{\widetilde{G}}_3$	=	(A ¹¹) ⁻¹ 0 0	0 0 A 0 0 I _m	Alternative RPG form J ₁ picks non-genot. J ₂ picks genotyped
м	$_{4} = \begin{bmatrix} (\mathbf{L}_{1}')^{-1} & \sqrt{w} \mathbf{A}_{imp} \mathbf{J}_{2}(\mathbf{L}')^{-1} & \sqrt{1-w} \mathbf{Z}_{imp} \\ 0 & \sqrt{w} \mathbf{J}_{2}(\mathbf{L}')^{-1} & \sqrt{1-w} \mathbf{Z}_{m} \end{bmatrix}$	$\widetilde{\mathbf{G}}_4$	-	$\begin{bmatrix} I_1 & 0 \\ 0 & I_{all} \\ 0 & 0 \end{bmatrix}$	0 0 I _m	$\frac{\text{Orthogonalized } \widetilde{\mathbf{G}}_{2}}{\mathbf{L}_{1} = \text{chol}(\mathbf{A}^{-1})}$ $\mathbf{L}_{1} = \text{chol}(\mathbf{A}^{11})$
м	${}_{5} = \begin{bmatrix} \sqrt{1-w}(\mathbf{L}_{1}')^{-1} & \sqrt{w}\mathbf{J}_{1}(\mathbf{L}')^{-1} & \sqrt{1-w}\mathbf{Z}_{imp} \\ 0 & \sqrt{w}\mathbf{J}_{2}(\mathbf{L}')^{-1} & \sqrt{1-w}\mathbf{Z}_{m} \end{bmatrix}$	$\mathbf{\widetilde{G}}_5$	-	$\begin{bmatrix} I_1 & 0 \\ 0 & I_{all} \\ 0 & 0 \end{bmatrix}$	0 0 I _m	Orthogonalized G,
м	$\mathbf{s} = \begin{bmatrix} (\mathbf{L}_1')^{-1} & \sqrt{w} \mathbf{A}_{imp} \widehat{\mathbf{J}}_2(\widehat{\mathbf{L}}')^{-1} & \sqrt{1-w} \mathbf{Z}_{imp} \\ 0 & \sqrt{w} \widehat{\mathbf{J}}_2(\widehat{\mathbf{L}}')^{-1} & \sqrt{1-w} \mathbf{Z}_w \end{bmatrix}$	$\tilde{\mathbf{G}}_{6}$	-	I1 0 0 Igane 0 0	0 0 1,,,	$\frac{\text{Reduced } \mathbf{A}_{22} \text{ of } \mathbf{\widetilde{G}}_{4}}{\mathbf{\widetilde{L}} = \text{chol} (\mathbf{\widehat{A}}^{-1}), \text{ where } \mathbf{\widehat{A}} : \text{ genot. and ancestors}}$

M	ME	Heritability $h^2 = 0.1$							
			polygenic proportion w						
		no preconditioning				wi	th precc	nditioni	ng
		0.00	0.01	0.20	1.00	0.00	0.01	0.20	1.00
0	rig.	-	619	624	623	-	178	126	119
	1	-	758	701	744	-	191	148	139
	2	736	1005	907	748	438	491	429	139
	3	736	3422	3154	623	438	1732	1416	119
	4	74	74	72	71	107	105	151	82
	5	74	73	70	70	107	107	151	49
	6	74	74	72	71	107	105	151	82

- Assuming singular values of (here usually) wide matrices M_i to be known: diagonal D_i.
- Since \mathbf{M}_i are all decompositions of same \mathbf{G} , singular values are shared: $\mathbf{D}_i = \mathbf{D}$.
- If fixed effects are neglected, $\mathbf{Z} = \mathbf{I}$, and single trait case is assumed, all fully orthogonalized MME share eigenvalues $\mathbf{D}^2 + \lambda \mathbf{I}$ and rest equal λ .
- Numbers of **distinct** (approximate) eigenvalues are thus same ⇒ this <u>explains same iteration counts</u>.

Singular value decomposition of \mathbf{M}_i $\mathbf{M}_i = \mathbf{U}_i \begin{bmatrix} \mathbf{D}_i & \mathbf{0} \end{bmatrix} \mathbf{V}'_i$

- Assuming singular values of (here usually) wide matrices M_i to be known: diagonal D_i.
- Since M_i are all decompositions of same G, singular values are shared: D_i = D.
- If fixed effects are neglected, $\mathbf{Z} = \mathbf{I}$, and single trait case is assumed, all fully orthogonalized MME share eigenvalues $\mathbf{D}^2 + \lambda \mathbf{I}$ and rest equal λ .
- Numbers of **distinct** (approximate) eigenvalues are thus same ⇒ this explains same iteration counts.

Singular value decomposition of \mathbf{M}_i $\mathbf{M}_i = \mathbf{U}_i \begin{bmatrix} \mathbf{D}_i & \mathbf{0} \end{bmatrix} \mathbf{V}'_i$

Eigendecomposition of **G** $\mathbf{G} = \mathbf{M}_i \mathbf{M}'_i = \mathbf{U}_i \mathbf{D}_i^2 \mathbf{U}'_i = \mathbf{U} \mathbf{D}^2 \mathbf{U}'$

- Assuming singular values of (here usually) wide matrices M_i to be known: diagonal D_i.
- Since M_i are all decompositions of same G, singular values are shared: D_i = D.
- If fixed effects are neglected, $\mathbf{Z} = \mathbf{I}$, and single trait case is assumed, all fully orthogonalized MME share eigenvalues $\mathbf{D}^2 + \lambda \mathbf{I}$ and rest equal λ .
- Numbers of distinct (approximate) eigenvalues are thus same ⇒ this explains same iteration counts.

Singular value decomposition of \mathbf{M}_i $\mathbf{M}_i = \mathbf{U}_i \begin{bmatrix} \mathbf{D}_i & \mathbf{0} \end{bmatrix} \mathbf{V}'_i$

Eigendecomposition of **G** $\mathbf{G} = \mathbf{M}_i \mathbf{M}'_i = \mathbf{U}_i \mathbf{D}_i^2 \mathbf{U}'_i = \mathbf{U} \mathbf{D}^2 \mathbf{U}'$

Eigendecomposition of "MME" $\widetilde{\mathbf{Z}}'_{i}\widetilde{\mathbf{Z}}_{i} + \lambda \mathbf{I} \approx \mathbf{V}_{i} \begin{bmatrix} \mathbf{D}^{2} + \lambda \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \lambda \mathbf{I} \end{bmatrix} \mathbf{V}'_{i}$

- Assuming singular values of (here usually) wide matrices M_i to be known: diagonal D_i.
- Since M_i are all decompositions of same G, singular values are shared: D_i = D.
- If fixed effects are neglected, $\mathbf{Z} = \mathbf{I}$, and single trait case is assumed, all fully orthogonalized MME share eigenvalues $\mathbf{D}^2 + \lambda \mathbf{I}$ and rest equal λ .
- Numbers of **distinct** (approximate) eigenvalues are thus same ⇒ this explains same iteration counts.

Singular value decomposition of \mathbf{M}_i $\mathbf{M}_i = \mathbf{U}_i \begin{bmatrix} \mathbf{D}_i & \mathbf{0} \end{bmatrix} \mathbf{V}'_i$

Eigendecomposition of **G** $\mathbf{G} = \mathbf{M}_i \mathbf{M}'_i = \mathbf{U}_i \mathbf{D}_i^2 \mathbf{U}'_i = \mathbf{U} \mathbf{D}^2 \mathbf{U}'$

Eigendecomposition of "MME" $\widetilde{\mathbf{Z}}'_{i}\widetilde{\mathbf{Z}}_{i} + \lambda \mathbf{I} \approx \mathbf{V}_{i} \begin{bmatrix} \mathbf{D}^{2} + \lambda \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \lambda \mathbf{I} \end{bmatrix} \mathbf{V}'_{i}$

- Linearly equivalent ssSNP-BLUPs: same solution and convergence, which formulation to choose?
 - Select numerically efficient formulation.
 - How to get a more efficient formulation?
- Group of <u>non-genotyped (1)</u> split to **non-ancestors** (n) and **ancestors** (a) of genotyped (2).
- Smaller pedigree of non-genotyped ancestors (a) and genotyped (2) individuals can be formed with $\widehat{A}^{-1} = \widehat{LL'}$ as its pedigree relationship matrix.

- Linearly equivalent ssSNP-BLUPs: same solution and convergence, which formulation to choose?
 - Select numerically efficient formulation.
 - How to get a more efficient formulation?
- Group of <u>non-genotyped (1)</u> split to **non-ancestors** (n) and **ancestors** (a) of genotyped (2).
- Smaller pedigree of non-genotyped ancestors (a) and genotyped (2) individuals can be formed with $\widehat{A}^{-1} = \widehat{LL'}$ as its pedigree relationship matrix.

- Linearly equivalent ssSNP-BLUPs: same solution and convergence, which formulation to choose?
 - ► Select numerically efficient formulation.
 - How to get a more efficient formulation?
- Group of <u>non-genotyped (1)</u> split to **non-ancestors** (n) and **ancestors** (a) of genotyped (2).
- Smaller pedigree of non-genotyped ancestors (a) and genotyped (2) individuals can be formed with $\widehat{A}^{-1} = \widehat{LL'}$ as its pedigree relationship matrix.

- Linearly equivalent ssSNP-BLUPs: same solution and convergence, which formulation to choose?
 - ► Select numerically efficient formulation.
 - How to get a more efficient formulation?
- Group of non-genotyped (1) split to **non-ancestors** (n) and **ancestors** (a) of genotyped (2).
- Smaller pedigree of non-genotyped ancestors (a) and genotyped (2) individuals can be formed with $\widehat{A}^{-1} = \widehat{LL'}$ as its pedigree relationship matrix.

- Linearly equivalent ssSNP-BLUPs: same solution and convergence, which formulation to choose?
 - ► Select numerically efficient formulation.
 - ► How to get a more efficient formulation?
- Group of <u>non-genotyped (1)</u> split to **non-ancestors** (n) and **ancestors** (a) of genotyped (2).
- Smaller pedigree of non-genotyped ancestors (a) and genotyped (2) individuals can be formed with $\hat{A}^{-1} = \hat{L}\hat{L}'$ as its pedigree relationship matrix.

"Cholesky" of $\hat{\mathbf{A}}^{-1} = \hat{\mathbf{L}}\hat{\mathbf{L}}'$ Smaller pedigree of non-genotyped ancestors (a) and genotyped (2): $\hat{\mathbf{L}} = \begin{bmatrix} \hat{\mathbf{L}}_{a} \\ \hat{\mathbf{L}}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{aa} & \mathbf{L}_{a2} \\ \mathbf{L}_{2a} & \mathbf{L}_{22} \end{bmatrix},$

Partial Orthogonalization of ssGBLUP Relationship Matrix H

- "Cholesky" matrix L (of A⁻¹ = LL') naturally orthogonalizes non-genotyped non-ancestors (n) from ssGBLUP relationship matrix H.
- Smaller pedigree individuals are related through:

$$\hat{\mathbf{L}}'\hat{\mathbf{H}}\hat{\mathbf{L}} = \hat{\mathbf{I}} + (1 - w)\mathbf{P}_{\hat{\mathbf{L}}_{a}'}^{\perp}(\hat{\mathbf{L}}_{2}'\mathbf{Z}_{m}\mathbf{Z}_{m}'\hat{\mathbf{L}}_{2} - \hat{\mathbf{I}})\mathbf{P}_{\hat{\mathbf{L}}_{a}'}^{\perp}$$

• Former "on-the-fly" imputation operations of genomic information are now part of orthogonal projection $\mathbf{P}_{L_a'}^{\perp}$.

Partial Orthogonalization of ssGBLUP Relationship Matrix H

- "Cholesky" matrix L (of A⁻¹ = LL') naturally orthogonalizes non-genotyped non-ancestors (n) from ssGBLUP relationship matrix H.
- · Smaller pedigree individuals are related through:

$$\widehat{\mathbf{L}}'\widehat{\mathbf{H}}\widehat{\mathbf{L}} = \widehat{\mathbf{I}} + (1 - w)\mathbf{P}_{\widehat{\mathbf{L}}'_a}^{\perp}(\widehat{\mathbf{L}}'_2\mathbf{Z}_m\mathbf{Z}'_m\widehat{\mathbf{L}}_2 - \widehat{\mathbf{I}})\mathbf{P}_{\widehat{\mathbf{L}}'_a}^{\perp}$$

• Former "on-the-fly" imputation operations of genomic information are now part of orthogonal projection $\mathbf{P}_{L_a'}^{\perp}$.

Partial Orthogonalization of ssGBLUP Relationship Matrix H

- "Cholesky" matrix L (of A⁻¹ = LL') naturally orthogonalizes non-genotyped non-ancestors (n) from ssGBLUP relationship matrix H.
- · Smaller pedigree individuals are related through:

 $\widehat{\mathbf{L}}'\widehat{\mathbf{H}}\widehat{\mathbf{L}} = \widehat{\mathbf{I}} + (1-w)\mathbf{P}_{\widehat{\mathbf{L}}'_a}^{\perp}(\widehat{\mathbf{L}}'_2\mathbf{Z}_m\mathbf{Z}'_m\widehat{\mathbf{L}}_2 - \widehat{\mathbf{I}})\mathbf{P}_{\widehat{\mathbf{L}}'_a}^{\perp}$

• Former "on-the-fly" imputation operations of genomic information are now part of orthogonal projection $\mathbf{P}_{\mathcal{U}_{a}}^{\perp}$.

Orthogonal projection of
$$\hat{\mathbf{L}}'_a$$

 $\mathbf{P}^{\perp}_{\hat{\mathbf{L}}'_a} = \hat{\mathbf{I}} - \hat{\mathbf{L}}'_a (\hat{\mathbf{L}}_a \hat{\mathbf{L}}'_a)^{-1} \hat{\mathbf{L}}_a$
 $= \hat{\mathbf{I}} - \hat{\mathbf{L}}'_a (\hat{\mathbf{A}}^{aa})^{-1} \hat{\mathbf{L}}_a$

- Let $\tilde{\mathbf{L}}_a$ be sparsity preserving Cholesky factorization of $\hat{\mathbf{A}}^{aa}$.
- New fully orthogonalized ssSNP-BLUP: $\mathbf{H} = \mathbf{M}\widetilde{\mathbf{G}}\mathbf{M}'$, where

$$\mathbf{M} = (\mathbf{L}')^{-1} \begin{bmatrix} \mathbf{I}_n & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \sqrt{1-w} \hat{\mathbf{M}}_a & \sqrt{w} \hat{\mathbf{I}} & \sqrt{1-w} (\hat{\mathbf{I}} - \hat{\mathbf{M}}_a \hat{\mathbf{M}}'_a) \hat{\mathbf{L}}'_2 \mathbf{Z}_m \end{bmatrix}$$

 $\widehat{\mathbf{G}} = \mathbf{I}$, and $\widehat{\mathbf{M}}_a = \widehat{\mathbf{L}}'_a (\widetilde{\mathbf{L}}'_a)^{-1}$.

- Main advantage of new formulation: size of numerical sparse Cholesky factorization matrix $\widetilde{\mathbf{L}}_a$ is number of non-genotyped ancestors ($\widehat{\mathbf{A}}^{aa}$) instead of all non-genotyped (\mathbf{A}^{11}).
- Four groups of random effects $\widetilde{\mathbf{u}}$: <u>non-genotyped ancestors (a)</u> have two sets of animals effects.

Sparse Cholesky
$$\widetilde{\mathbf{L}}_a$$
 of $\widehat{\mathbf{A}}^{aa}$
 $\widehat{\mathbf{A}}^{aa} = \widehat{\mathbf{L}}_a \widehat{\mathbf{L}}'_a = \widetilde{\mathbf{L}}_a \widetilde{\mathbf{L}}'_a$

- Let $\tilde{\mathbf{L}}_a$ be sparsity preserving Cholesky factorization of $\hat{\mathbf{A}}^{aa}$.
- <u>New fully orthogonalized ssSNP-BLUP</u>: $\mathbf{H} = \mathbf{M}\widetilde{\mathbf{G}}\mathbf{M}'$, where

$$\mathbf{M} = (\mathbf{L}')^{-1} \begin{bmatrix} \mathbf{I}_n & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \sqrt{1-w} \widehat{\mathbf{M}}_a & \sqrt{w} \widehat{\mathbf{I}} & \sqrt{1-w} (\widehat{\mathbf{I}} - \widehat{\mathbf{M}}_a \widehat{\mathbf{M}}'_a) \widehat{\mathbf{L}}'_2 \mathbf{Z}_m \end{bmatrix}$$

= **I**, and $\widehat{\mathbf{M}}_a = \widehat{\mathbf{L}}' (\widetilde{\mathbf{L}}')^{-1}$.

Sparse Cholesky
$$\widetilde{\mathbf{L}}_a$$
 of $\widehat{\mathbf{A}}^{aa}$
 $\widehat{\mathbf{A}}^{aa} = \widehat{\mathbf{L}}_a \widehat{\mathbf{L}}'_a = \widetilde{\mathbf{L}}_a \widetilde{\mathbf{L}}'_a$

- <u>Main advantage of new formulation</u>: size of numerical sparse Cholesky factorization matrix $\widetilde{\mathbf{L}}_a$ is number of non-genotyped ancestors ($\widehat{\mathbf{A}}^{aa}$) instead of all non-genotyped (\mathbf{A}^{11}).
- Four groups of random effects $\widetilde{\mathbf{u}}$: <u>non-genotyped ancestors (a)</u> have two sets of animals effects.

- Let $\tilde{\mathbf{L}}_a$ be sparsity preserving Cholesky factorization of $\hat{\mathbf{A}}^{aa}$.
- <u>New fully orthogonalized ssSNP-BLUP</u>: $\mathbf{H} = \mathbf{M}\widetilde{\mathbf{G}}\mathbf{M}'$, where

$$\mathbf{M} = (\mathbf{L}')^{-1} \begin{bmatrix} \mathbf{I}_n & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \sqrt{1-w} \widehat{\mathbf{M}}_a & \sqrt{w} \widehat{\mathbf{I}} & \sqrt{1-w} (\widehat{\mathbf{I}} - \widehat{\mathbf{M}}_a \widehat{\mathbf{M}}'_a) \widehat{\mathbf{L}}'_2 \mathbf{Z}_m \end{bmatrix}$$

 $\widetilde{\mathbf{G}} = \mathbf{I}$, and $\widehat{\mathbf{M}}_a = \widehat{\mathbf{L}}'_a (\widetilde{\mathbf{L}}'_a)^{-1}$.

Sparse Cholesky
$$\widetilde{\mathbf{L}}_a$$
 of $\widehat{\mathbf{A}}^{aa}$
 $\widehat{\mathbf{A}}^{aa} = \widehat{\mathbf{L}}_a \widehat{\mathbf{L}}'_a = \widetilde{\mathbf{L}}_a \widetilde{\mathbf{L}}'_a$

- Main advantage of new formulation: size of numerical sparse Cholesky factorization matrix $\tilde{\mathbf{L}}_a$ is number of non-genotyped ancestors ($\hat{\mathbf{A}}^{aa}$) instead of all non-genotyped (\mathbf{A}^{11}).
- Four groups of random effects <u>u</u>: <u>non-genotyped ancestors (a)</u> have two sets of animals effects.

9 WCGALP 2018

- Let $\tilde{\mathbf{L}}_a$ be sparsity preserving Cholesky factorization of $\hat{\mathbf{A}}^{aa}$.
- <u>New fully orthogonalized ssSNP-BLUP</u>: $\mathbf{H} = \mathbf{M}\widetilde{\mathbf{G}}\mathbf{M}'$, where

$$\mathbf{M} = (\mathbf{L}')^{-1} \begin{bmatrix} \mathbf{I}_n & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \sqrt{1-w} \hat{\mathbf{M}}_a & \sqrt{w} \hat{\mathbf{I}} & \sqrt{1-w} (\hat{\mathbf{I}} - \hat{\mathbf{M}}_a \hat{\mathbf{M}}_a') \hat{\mathbf{L}}_2' \mathbf{Z}_m \end{bmatrix}$$

 $\widehat{\mathbf{G}} = \mathbf{I}$, and $\widehat{\mathbf{M}}_a = \widehat{\mathbf{L}}'_a (\widetilde{\mathbf{L}}'_a)^{-1}$.

- Main advantage of new formulation: size of numerical sparse Cholesky factorization matrix $\widetilde{\mathbf{L}}_a$ is number of non-genotyped ancestors ($\widehat{\mathbf{A}}^{aa}$) instead of all non-genotyped (\mathbf{A}^{11}).
- Four groups of random effects <u>u</u>: <u>non-genotyped ancestors (a)</u> have two sets of animals effects.

Sparse Cholesky
$$\widetilde{\mathbf{L}}_a$$
 of $\widehat{\mathbf{A}}^{aa}$
 $\widehat{\mathbf{A}}^{aa} = \widehat{\mathbf{L}}_a \widehat{\mathbf{L}}'_a = \widetilde{\mathbf{L}}_a \widetilde{\mathbf{L}}'_a$

- <u>Sparse Cholesky \widetilde{L}_a (of $\widehat{A}^{aa} = \widetilde{L}_a \widetilde{L}'_a$) has fill-ins</u> depending on pedigree and proportion of genotyped.
- Memory reguirements of $\tilde{\mathbf{L}}_a$ must remain manageable with very large number of genotyped.
- Investigated by simulating different proportions of genotyped animals in Nordic dairy cattle population.
- Pedigree of 9.2 million was <u>"genotyped" with four</u> scenarios varying number of genotyped.
- Memory usage: <u>13 times size of pedigree</u> when 2.8 million genotyped, occupying 5 GB memory.

- <u>Sparse Cholesky \widetilde{L}_a (of $\widehat{A}^{aa} = \widetilde{L}_a \widetilde{L}'_a$) has fill-ins</u> depending on pedigree and proportion of genotyped.
- Memory reguirements of $\tilde{\mathbf{L}}_a$ must remain manageable with very large number of genotyped.
- Investigated by simulating different proportions of genotyped animals in Nordic dairy cattle population.
- Pedigree of 9.2 million was <u>"genotyped" with four</u> scenarios varying number of genotyped.
- Memory usage: <u>13 times size of pedigree</u> when 2.8 million genotyped, occupying 5 GB memory.

- <u>Sparse Cholesky \widetilde{L}_a (of $\widehat{A}^{aa} = \widetilde{L}_a \widetilde{L}'_a$) has fill-ins</u> depending on pedigree and proportion of genotyped.
- Memory reguirements of $\tilde{\mathbf{L}}_a$ must remain manageable with very large number of genotyped.
- Investigated by simulating different proportions of genotyped animals in Nordic dairy cattle population.
- Pedigree of 9.2 million was <u>"genotyped" with four</u> scenarios varying number of genotyped.
- Memory usage: <u>13 times size of pedigree</u> when 2.8 million genotyped, occupying 5 GB memory.

- <u>Sparse Cholesky $\widetilde{\mathbf{L}}_a$ (of $\widehat{\mathbf{A}}^{aa} = \widetilde{\mathbf{L}}_a \widetilde{\mathbf{L}}'_a$) has fill-ins depending on pedigree and proportion of genotyped.</u>
- Memory reguirements of $\tilde{\mathbf{L}}_a$ must remain manageable with very large number of genotyped.
- Investigated by simulating different proportions of genotyped animals in Nordic dairy cattle population.
- Pedigree of 9.2 million was <u>"genotyped" with four</u> <u>scenarios</u> varying number of genotyped.
- Memory usage: <u>13 times size of pedigree</u> when 2.8 million genotyped, occupying 5 GB memory.

- Sparse Cholesky $\widetilde{\mathbf{L}}_a$ (of $\widehat{\mathbf{A}}^{aa} = \widetilde{\mathbf{L}}_a \widetilde{\mathbf{L}}'_a$) has fill-ins depending on pedigree and proportion of genotyped.
- Memory reguirements of $\tilde{\mathbf{L}}_a$ must remain manageable with very large number of genotyped.
- Investigated by simulating different proportions of genotyped animals in Nordic dairy cattle population.
- Pedigree of 9.2 million was <u>"genotyped" with four</u> scenarios varying number of genotyped.
- Memory usage: <u>13 times size of pedigree</u> when 2.8 million genotyped, occupying 5 GB memory.

- 1 All <u>fully orthogonalized ssSNP-BLUPs</u> were shown to share <u>same convergence properties</u> with respect to iterative solution methods.
- 2 New ssSNP-BLUP formulation was presented in which Single-step relationship matrix **H** was expressed using smaller pedigree of genotyped and their ancestors.
- 3 Feasibility of ssSNP-BLUP was investigated with very large number of genotyped individuals.
 - Memory requirements were found to be manageable indicating that ssSNP-BLUP remains numerically efficient when number of genotyped animals increases.

- 1 All <u>fully orthogonalized ssSNP-BLUPs</u> were shown to share <u>same convergence properties</u> with respect to iterative solution methods.
- 2 New ssSNP-BLUP formulation was presented in which Single-step relationship matrix **H** was expressed using smaller pedigree of genotyped and their ancestors.
- 3 Feasibility of ssSNP-BLUP was investigated with very large number of genotyped individuals.
 - Memory requirements were found to be manageable indicating that ssSNP-BLUP remains numerically efficient when number of genotyped animals increases.

- 1 All <u>fully orthogonalized ssSNP-BLUPs</u> were shown to share <u>same convergence properties</u> with respect to iterative solution methods.
- 2 New ssSNP-BLUP formulation was presented in which Single-step relationship matrix H was expressed using smaller pedigree of genotyped and their ancestors.
- 3 Feasibility of ssSNP-BLUP was investigated with very large number of genotyped individuals.
 - Memory requirements were found to be manageable indicating that ssSNP-BLUP remains numerically efficient when number of genotyped animals increases.

WCGALP 2018

- 1 All <u>fully orthogonalized ssSNP-BLUPs</u> were shown to share <u>same convergence properties</u> with respect to iterative solution methods.
- 2 New ssSNP-BLUP formulation was presented in which Single-step relationship matrix H was expressed using smaller pedigree of genotyped and their ancestors.
- 3 Feasibility of ssSNP-BLUP was investigated with very large number of genotyped individuals.
 - Memory requirements were found to be manageable indicating that ssSNP-BLUP remains numerically efficient when number of genotyped animals increases.

- 1 All <u>fully orthogonalized ssSNP-BLUPs</u> were shown to share <u>same convergence properties</u> with respect to iterative solution methods.
- 2 New ssSNP-BLUP formulation was presented in which Single-step relationship matrix H was expressed using smaller pedigree of genotyped and their ancestors.
- 3 Feasibility of ssSNP-BLUP was investigated with very large number of genotyped individuals.
 - Memory requirements were found to be manageable indicating that ssSNP-BLUP remains numerically efficient when number of genotyped animals increases.

Matti Taskinen, Esa Mäntysaari, Ismo Strandér

WCGALP 2018

