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Challenge

Computations of large animal breeding evaluations
become numerially challenging when number of
genotyped animals increases.
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Background: Single-step Genomic BLUP (ssGBLUP)

• A mixed model equation (MME).

• Combines pedigree (A) and genomic
marker relationship information (Gg)
through Single-step relationship matrix H.

• Requires inversion of full genomic
relationship matrix Gg.

• Inversion G−1
g becomes a bottleneck when

number of genotyped increases.

Single-step relationship matrix H

H−1 = A−1 +
[

0 0
0 G−1

w − (A22)−1

]

Pedigree relationship matrix:

A−1 =
[

A11 A12

A21 A22

]

(1 = non-genotyped)
(2 = genotyped)

Adjusted genomic relationship matrix:
Gw = (1 −w)Gg +wA22

Genomic relationship matrix:
Gg = ZmZ′

m
Zm is centered and scaled marker matrix
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Previously: Linearly Equivalent Mixed Model Equations
[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. “Single-step SNP-BLUP with on-the-fly imputed genotypes and

residual polygenic effects”. In: Genet. Sel. Evol. 49.1 (2017), p. 15.

• Linearly equivalent MMEs [1]: decomposition of
relationship matrix G of random effects û as

G = MG̃M′

• Alternative MME: parts of decomposition attached

to new model matrix Z̃ = ZM and new set of
random effects ũ related through G̃.

• Original MME solved from û = Mũ .

• Inversion G−1 avoided if G̃ = I, i.e. ũ “orthogonal”.

• GBLUP ⇔ SNP-BLUP: ũm are marker effects.

Original MME
[

b̂
û

]

=
[

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z +G−1

]−1 [X′R−1y
Z′R−1y

]

Linearly equivalent MME

[

b̂
ũ

]

=
[

X′R−1X X′R−1Z̃
Z̃′R−1X Z̃′R−1Z̃ + G̃−1

]−1 [X′R−1y
Z̃′R−1y

]

Calculation of original effects:
[

b̂
û

]

=
[

Ib 0
0 M

] [

b̂
ũ

]

4 WCGALP 2018 Numerically Efficient Fully Orthogonalized Single-step SNP-BLUP Matti Taskinen, Esa Mäntysaari, Ismo Strandén



Previously: Linearly Equivalent Mixed Model Equations
[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. “Single-step SNP-BLUP with on-the-fly imputed genotypes and

residual polygenic effects”. In: Genet. Sel. Evol. 49.1 (2017), p. 15.

• Linearly equivalent MMEs [1]: decomposition of
relationship matrix G of random effects û as
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û

]

=
[

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z +G−1

]−1 [X′R−1y
Z′R−1y

]

Linearly equivalent MME

[

b̂
ũ
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random effects ũ related through G̃.

• Original MME solved from û = Mũ .
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• GBLUP ⇔ SNP-BLUP: ũm are marker effects.

Original MME
[

b̂
û
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ũ

]

=
[

X′R−1X X′R−1Z̃
Z̃′R−1X Z̃′R−1Z̃ + G̃−1

]−1 [X′R−1y
Z̃′R−1y

]

Calculation of original effects:
[

b̂
û
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Previously: Linearly Equivalent ssGBLUP Formulations
[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. “Single-step SNP-BLUP with on-the-fly imputed genotypes and

residual polygenic effects”. In: Genet. Sel. Evol. 49.1 (2017), p. 15.

• Unlimited number of possible decompositions
of ssGBLUP relationship matrix [1]:

H = MiG̃iM′
i

• Linearly equivalent ssGBLUP formulations with
varying number of random effects ũ without or
with marker effects (ssSNP-BLUP).

• Numerical solutions same as with original
ssGBLUP.

• Fully orthogonalized (G̃ = I) ssSNP-BLUPs:
▶ almost identical number of iterations when

solved using iterative methods, e.g. PCG.

M1 =
[

I1 Aimp
0 I2

]

G̃1 =
[

(A11)−1 0
0 Gw

]

Gw=wA22+(1−w)ZmZ′
m

M2 =

[

I1
√

wAimp
√

1−wZimp
0

√

wI2
√

1−wZm

]

G̃2 =
⎡

⎢

⎢

⎣

(A11)−1 0 0
0 A22 0
0 0 Im

⎤

⎥

⎥

⎦

Zimp = AimpZm

M3 =

[
√

1−wI1
√

wJ1
√

1−wZimp
0

√

wJ2
√

1−wZm

]

G̃3 =
⎡

⎢

⎢

⎣

(A11)−1 0 0
0 A 0
0 0 Im

⎤

⎥

⎥

⎦

Alternative RPG form
J1 picks non-genot.
J2 picks genotyped

M4 =

[

(L1
′)−1

√

wAimpJ2(L′)−1
√

1−wZimp
0

√

wJ2(L′)−1
√

1−wZm

]

G̃4 =
⎡

⎢

⎢

⎣

I1 0 0
0 Iall 0
0 0 Im

⎤

⎥

⎥

⎦

Orthogonalized G̃2
L = chol(A−1)
L1 = chol(A11)

M5 =

[
√

1−w(L1
′)−1

√

wJ1(L′)−1
√

1−wZimp
0

√

wJ2(L′)−1
√

1−wZm

]

G̃5 =
⎡

⎢

⎢

⎣

I1 0 0
0 Iall 0
0 0 Im

⎤

⎥

⎥

⎦

Orthogonalized G̃3

M6 =

[

(L1
′)−1

√

wAimpĴ2 (̂L′)−1
√

1−wZimp
0

√

wĴ2 (̂L′)−1
√

1−wZm

]

G̃6 =
⎡

⎢

⎢

⎣

I1 0 0
0 Iganc 0
0 0 Im

⎤

⎥

⎥

⎦

Reduced A22 of G̃4
L̂ = chol(Â−1), where
Â ∶ genot. and ancestors

MME Heritability ℎ2 = 0.1
polygenic proportion w

no preconditioning with preconditioning
0.00 0.01 0.20 1.00 0.00 0.01 0.20 1.00

orig. - 619 624 623 - 178 126 119
1 - 758 701 744 - 191 148 139
2 736 1005 907 748 438 491 429 139
3 736 3422 3154 623 438 1732 1416 119
4 74 74 72 71 107 105 151 82
5 74 73 70 70 107 107 151 49
6 74 74 72 71 107 105 151 82
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Previously: Linearly Equivalent ssGBLUP Formulations
[1] M. Taskinen, E. A. Mäntysaari, and I. Strandén. “Single-step SNP-BLUP with on-the-fly imputed genotypes and

residual polygenic effects”. In: Genet. Sel. Evol. 49.1 (2017), p. 15.
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Result 1: Iteration Convergence of Fully Orthogonalized (G = MiM′
i) MMEs

• Assuming singular values of (here usually) wide
matrices Mi to be known: diagonal Di.

• Since Mi are all decompositions of same G,
singular values are shared: Di = D.

• If fixed effects are neglected, Z = I, and single trait
case is assumed, all fully orthogonalized MME
share eigenvalues D2 + �I and rest equal �.

• Numbers of distinct (approximate) eigenvalues are
thus same ⇒ this explains same iteration counts.

Singular value decomposition of Mi

Mi = Ui
[

Di 0
]

V′
i

Eigendecomposition of G

G = MiM′
i = UiD2

iU
′
i = UD2U′

Eigendecomposition of “MME”

Z̃′
iZ̃i + �I ≈ Vi

[

D2 + �I 0
0 �I

]

V′
i
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Numerical efficiency: Smaller Pedigree of Ancestors of Genotyped: Â−1

• Linearly equivalent ssSNP-BLUPs: same solution
and convergence, which formulation to choose?

▶ Select numerically efficient formulation.
▶ How to get a more efficient formulation?

• Group of non-genotyped (1) split to non-ancestors
(n) and ancestors (a) of genotyped (2).

• Smaller pedigree of non-genotyped ancestors (a)
and genotyped (2) individuals can be formed with

Â−1 = L̂L̂′ as its pedigree relationship matrix.

“Cholesky” of A−1 = LL′

L =
⎡

⎢

⎢

⎣

Lnn 0 0
Lan Laa La2
L2n L2a L22

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

Lnn 0 0
Lan

[

L̂
]

L2n

⎤

⎥

⎥

⎦

“Cholesky” of Â−1 = L̂L̂′

Smaller pedigree of non-genotyped
ancestors (a) and genotyped (2):

L̂ =

[

L̂a
L̂2

]

=
[

Laa La2
L2a L22

]

,
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Â−1 = L̂L̂′ as its pedigree relationship matrix.

“Cholesky” of A−1 = LL′

L =
⎡

⎢

⎢

⎣

Lnn 0 0
Lan Laa La2
L2n L2a L22

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

Lnn 0 0
Lan

[

L̂
]

L2n

⎤

⎥

⎥

⎦

“Cholesky” of Â−1 = L̂L̂′
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Partial Orthogonalization of ssGBLUP Relationship Matrix H

• “Cholesky” matrix L (of A−1 = LL′) naturally
orthogonalizes non-genotyped non-ancestors (n)
from ssGBLUP relationship matrix H.

• Smaller pedigree individuals are related through:

L̂′ĤL̂ = Î + (1−w)P⟂
L̂′
a
(̂L′

2ZmZ
′
mL̂2 − Î)P⟂

L̂′
a

• Former “on-the-fly” imputation operations of
genomic information are now part of orthogonal
projection P⟂

L̂′
a
.

Orthogonalizing group (n) in H

L′HL =
[

In 0
0 L̂′ĤL̂

]

Orthogonal projection of L̂′
a

P⟂
L̂′
a
= Î − L̂′

a (̂LaL̂
′
a)

−1L̂a

= Î − L̂′
a(Â

aa)−1L̂a
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Result 2: New ssSNP-BLUP Formulation using the Smaller Pedigree

• Let L̃a be sparsity preserving Cholesky factorization of Âaa.

• New fully orthogonalized ssSNP-BLUP: H = MG̃M′, where

M = (L′)−1
[In 0 0 0
0

√

1−wM̂a
√

wÎ
√

1−w(̂I − M̂aM̂′
a )̂L

′
2Zm

]

G̃ = I, and M̂a = L̂′
a (̃L

′
a)

−1.

• Main advantage of new formulation: size of numerical sparse
Cholesky factorization matrix L̃a is number of non-genotyped
ancestors (Âaa) instead of all non-genotyped (A11).

• Four groups of random effects ũ: non-genotyped ancestors (a)
have two sets of animals effects.

Sparse Cholesky L̃a of Âaa

Âaa = L̂aL̂′
a = L̃aL̃′

a

New random effects ũ

ũ =

⎡

⎢

⎢

⎢

⎣

ũn
ũa
ũa+2
ũm

⎤

⎥

⎥

⎥

⎦
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Âaa = L̂aL̂′
a = L̃aL̃′

a

New random effects ũ
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ũa+2
ũm
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a = L̃aL̃′

a

New random effects ũ

ũ =

⎡

⎢

⎢

⎢

⎣

ũn
ũa
ũa+2
ũm

⎤

⎥

⎥

⎥

⎦
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Result 3: Numerical Feasibility with Large Number of Genotyped

• Sparse Cholesky L̃a (of Âaa = L̃aL̃′
a) has fill-ins

depending on pedigree and proportion of genotyped.

• Memory reguirements of L̃a must remain
manageable with very large number of genotyped.

• Investigated by simulating different proportions of
genotyped animals in Nordic dairy cattle population.

• Pedigree of 9.2 million was “genotyped” with four
scenarios varying number of genotyped.

• Memory usage: 13 times size of pedigree when 2.8
million genotyped, occupying 5 GB memory.
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a) has fill-ins

depending on pedigree and proportion of genotyped.

• Memory reguirements of L̃a must remain
manageable with very large number of genotyped.

• Investigated by simulating different proportions of
genotyped animals in Nordic dairy cattle population.

• Pedigree of 9.2 million was “genotyped” with four
scenarios varying number of genotyped.

• Memory usage: 13 times size of pedigree when 2.8
million genotyped, occupying 5 GB memory.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Relative number of genotyped animals

nn
z 

/ n
nz

(L
)

Number of non-zeros in Cholesky matrix

All bulls, random cows
All bulls, youngest cows
Random
Youngest

10 WCGALP 2018 Numerically Efficient Fully Orthogonalized Single-step SNP-BLUP Matti Taskinen, Esa Mäntysaari, Ismo Strandén



Conclusions

1 All fully orthogonalized ssSNP-BLUPs were shown to
share same convergence properties with respect to
iterative solution methods.

2 New ssSNP-BLUP formulation was presented in which
Single-step relationship matrix H was expressed using
smaller pedigree of genotyped and their ancestors.

3 Feasibility of ssSNP-BLUP was investigated with very
large number of genotyped individuals.

▶ Memory requirements were found to be manageable
indicating that ssSNP-BLUP remains numerically efficient
when number of genotyped animals increases.
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